• Alpert, J. C., and S. Saha, 1989: Operational systematic error correction for the NMC operational medium range forecast model. National Meteorological Center Office Note 360, 10 pp., http://www.ncep.noaa.gov/officenotes/NOAA-NPM-NCEPON-0005/01408951.pdf.

  • Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, https://doi.org/10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Chen, L., J. Gotschalck, A. Hartman, D. Miskus, R. Tinker, and A. Artusa, 2019: Flash drought characteristics based on U.S. Drought Monitor. Atmosphere, 10, 498, https://doi.org/10.3390/atmos10090498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J. I., J. B. Basara, J. A. Otkin, E. D. Hunt, R. A. Wakefield, P. X. Flanagan, and X. Xiao, 2019: Application of flash drought frequency across the United States. J. Hydrometeor., 20, 833846, https://doi.org/10.1175/JHM-D-18-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Liberto, T., 2019: Flash drought engulfs the U.S. Southeast in September 2019. Climate.gov, https://www.climate.gov/news-features/event-tracker/flash-drought-engulfs-us-southeast-september-2019.

  • Ford, T. W., and C. F. Labosier, 2017: Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteor., 247, 414423, https://doi.org/10.1016/j.agrformet.2017.08.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second generation global medium range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, F. D., 1992: Skill of medium range forecasts. NCEP Office Note 385, 32 pp.

  • Jensco, K., and et al. , 2019: Flash drought: Lessons learned from the 2017 drought across the U.S. Northern Plains and Canadian Prairies. NOAA National Integrated Drought Information System, 72 pp., https://www.drought.gov/drought/sites/drought.gov.drought/files/NIDIS_LL_FlashDrought_2017_low-res_Final_6.6.2019.pdf.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, H. Wang, S. P. Mahanama, and A. M. DeAngelis, 2019: Flash drought as captured by Reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeor., 20, 12411258, https://doi.org/10.1175/JHM-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Zhu, L. Ren, J. Otkin, E. D. Hunt, X. Yang, F. Yuan, and S. Jiang, 2020: Two different methods for flash drought identification: Comparison of their strengths and limitations. J. Hydrometeor., 21, 691704, https://doi.org/10.1175/JHM-D-19-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nissen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. D. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2014: Hydrologic prediction over the conterminous United States using the National Multi-model ensemble. J. Hydrometeor., 15, 14571472, https://doi.org/10.1175/JHM-D-13-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2016: Precipitation deficit flash droughts over the United States. J. Hydrometeor., 17, 11691184, https://doi.org/10.1175/JHM-D-15-0158.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., L. C. Chen, S. Shukla, T. J. Bohn, and D. P. Lettenmaier, 2012: Uncertainties in North American land data assimilation system over the contiguous United States. J. Hydrometeor., 13, 9961009, https://doi.org/10.1175/JHM-D-11-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., C. Bailey, K. F. Brill, P. Burke, W. A. Hogsett, R. Rausch, and M. Schichtel, 2014: Precipitation and temperature forecast performance at the weather prediction center. Wea. Forecasting, 29, 489504, https://doi.org/10.1175/WAF-D-13-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. Mladenova, J. Basara, and M. Svoboda, 2013: Examining flash drought development using the thermal infrared–based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014: Examining rapid onset drought development using the thermal infrared–based evaporative stress index. J. Hydrometeor., 15, 938956, https://doi.org/10.1175/JHM-D-13-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2015: Using temporal changes in drought indices to generate probabilistic drought intensification forecasts. J. Hydrometeor., 16, 88105, https://doi.org/10.1175/JHM-D-14-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018: Flash droughts: A review and assessment of the challenges imposed by rapid onset droughts in the United States. Bull. Amer. Meteor. Soc., 99, 911919, https://doi.org/10.1175/BAMS-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., and et al. , 2020: Flash droughts present a new challenge for subseasonal to seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., Springer, 133145.

    • Crossref
    • Export Citation
  • Shukla, S., N. Voisin, and P. D. Lettenmaier, 2012: Value of medium range weather forecasts in the improvement of seasonal hydrological prediction skill. Hydrol. Earth Syst. Sci., 16, 28252838, https://doi.org/10.5194/hess-16-2825-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and et al. , 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and X. Yuan, 2018: Two types of flash drought and their connections with seasonal drought. Adv. Atmos. Sci., 35, 14781490, https://doi.org/10.1007/s00376-018-8047-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712, https://doi.org/10.1175/BAMS-87-12-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 275 275 64
Full Text Views 60 60 7
PDF Downloads 79 79 11

Prediction of Flash Droughts over the United States

View More View Less
  • 1 NOAA/NWS/Climate Prediction Center, College Park, Maryland
  • | 2 Department of Geography, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

We examine reforecasts of flash droughts over the United States for the late spring (April–May), midsummer (June–July), and late summer/early autumn (August–September) with lead times up to 3 pentads based on the NOAA second-generation Global Ensemble Forecast System reforecasts version 2 (GEFSv2). We consider forecasts of both heat wave and precipitation deficit (P deficit) flash droughts, where heat wave flash droughts are characterized by high temperature and depletion of soil moisture and P deficit flash droughts are caused by lack of precipitation that leads to (rather than being the cause of) high temperature. We find that the GEFSv2 reforecasts generally capture the frequency of occurrence (FOC) patterns. The equitable threat score (ETS) of heat wave flash drought forecasts for late spring in the regions where heat wave flash droughts are most likely to occur over the north-central and Pacific Northwest regions is statistically significant up to 2 pentads. The GEFSv2 reforecasts capture the basic pattern of the FOC of P-deficit flash droughts and also are skillful up to lead about 2 pentads. However, the reforecasts overestimate the P-deficit flash drought FOC over parts of the Southwest in late spring, leading to large false alarm rates. For autumn, the reforecasts underestimate P-deficit flash drought occurrence over California and Nevada. The GEFSv2 reforecasts are able to capture the approximately linear relationship between evaporation and soil moisture, but the lack of skill in precipitation forecasts limits the skill of P-deficit flash drought forecasts.

Retired.

Corresponding author: Prof. Dennis P. Lettenmaier, dettenm@ucla.edu

Abstract

We examine reforecasts of flash droughts over the United States for the late spring (April–May), midsummer (June–July), and late summer/early autumn (August–September) with lead times up to 3 pentads based on the NOAA second-generation Global Ensemble Forecast System reforecasts version 2 (GEFSv2). We consider forecasts of both heat wave and precipitation deficit (P deficit) flash droughts, where heat wave flash droughts are characterized by high temperature and depletion of soil moisture and P deficit flash droughts are caused by lack of precipitation that leads to (rather than being the cause of) high temperature. We find that the GEFSv2 reforecasts generally capture the frequency of occurrence (FOC) patterns. The equitable threat score (ETS) of heat wave flash drought forecasts for late spring in the regions where heat wave flash droughts are most likely to occur over the north-central and Pacific Northwest regions is statistically significant up to 2 pentads. The GEFSv2 reforecasts capture the basic pattern of the FOC of P-deficit flash droughts and also are skillful up to lead about 2 pentads. However, the reforecasts overestimate the P-deficit flash drought FOC over parts of the Southwest in late spring, leading to large false alarm rates. For autumn, the reforecasts underestimate P-deficit flash drought occurrence over California and Nevada. The GEFSv2 reforecasts are able to capture the approximately linear relationship between evaporation and soil moisture, but the lack of skill in precipitation forecasts limits the skill of P-deficit flash drought forecasts.

Retired.

Corresponding author: Prof. Dennis P. Lettenmaier, dettenm@ucla.edu
Save