• Brunsdon, C., J. McClatchey, and D. Unwin, 2001: Spatial variations in the average rainfall-altitude relationship in Great Britain: An approach using geographically weighted regression. Int. J. Climatol., 21, 455466, https://doi.org/10.1002/joc.614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, T., and J. Holden, 2010: Changing temperature and rainfall gradients in the British Uplands. Climate Res., 45, 5770, https://doi.org/10.3354/cr00910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., S. F. D. Wekker, and B. J. Snyder, Eds., 2013: Mountain Weather Research and Forecasting. Springer, 564 pp., https://doi.org/10.1007/978-94-007-4098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., K. Redmond, and D. Cayan, 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, https://doi.org/10.1175/JHM-390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, and R. S. Vose, 2008: Strategies for evaluating quality assurance procedures. J. Appl. Meteor. Climatol., 47, 17851791, https://doi.org/10.1175/2007JAMC1706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EROSC, 2017: Global 30 arc-second elevation (GTOPO30). U.S. Geological Survey, accessed 1 November 2018, https://doi.org/10.5066/f7df6pqs.

    • Crossref
    • Export Citation
  • Gibson, W., C. Daly, and G. Taylor, 1997: Derivation of facet grids for use with the PRISM model. 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 208209.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., R. E. Woods, and S. L. Eddins, 2004: Digital Image Processing Using MATLAB. Pearson Education, 620 pp.

  • Gowan, T. M., W. J. Steenburgh, and C. S. Schwartz, 2018: Validation of mountain precipitation forecasts from the convection-permitting NCAR ensemble and operational forecast systems over the western United States. Wea. Forecasting, 33, 739765, https://doi.org/10.1175/WAF-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haralick, R. M., and L. G. Shapiro, 1992: Computer and Robot Vision. Vol. 1. Addison-Wesley Longman, 630 pp.

  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and S. A. Margulis, 2017: Climatology of seasonal snowfall accumulation across the Sierra Nevada (USA): Accumulation rates, distributions, and variability. Water Resour. Res., 53, 60336049, https://doi.org/10.1002/2017WR020915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and S. A. Margulis, 2018: Investigating the variability of high-elevation seasonal orographic snowfall enhancement and its drivers across Sierra Nevada, California. J. Hydrometeor., 19, 4767, https://doi.org/10.1175/JHM-D-16-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., and C. Kottmeier, 2006: Orographic enhancement of precipitation over low mountain ranges. Part I: Model formulation and idealized simulations. J. Appl. Meteor. Climatol., 45, 10251040, https://doi.org/10.1175/JAM2389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, W. R., W. J. Steenburgh, T. I. Alcott, and J. J. Rutz, 2017: GEFS precipitation forecasts and the implications of statistical downscaling over the western United States. Wea. Forecasting, 32, 10071028, https://doi.org/10.1175/WAF-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., M. L. Wrzesien, M. Durand, J. Adam, and D. P. Lettenmaier, 2017: How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett., 44, 61636172, https://doi.org/10.1002/2017GL073551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, C. H., J. T. Abatzoglou, and Z. A. Holden, 2013: The missing mountain water: Slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science, 342, 13601364, https://doi.org/10.1126/science.1242335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lull, H. W., and L. Ellison, 1950: Precipitation in relation to altitude in central Utah. Ecology, 31, 479484, https://doi.org/10.2307/1931507.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., J. R. Minder, P. J. Neiman, and E. Sukovich, 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, https://doi.org/10.1175/2010JHM1264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and et al. , 2012a: Global Historical Climatology Network - Daily (GHCN-Daily), version 3.22. NOAA National Centers for Environmental Information, accessed 20 March 2018, https://doi.org/10.7289/v5d21vhz.

    • Crossref
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012b: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, L. E., and J. T. Abatzoglou, 2015: Spatial coherence of extreme precipitation events in the northwestern United States. Int. J. Climatol., 36, 24512460, https://doi.org/10.1002/joc.4504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praskievicz, S., 2017: Downscaling climate-model output in mountainous terrain using local topographic lapse rates for hydrologic modeling of climate-change impacts. Phys. Geogr., 39, 99117, https://doi.org/10.1080/02723646.2017.1378555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praskievicz, S., and P. Bartlein, 2014: Hydrologic modeling using elevationally adjusted NARR and NARCCAP regional climate-model simulations: Tucannon River, Washington. J. Hydrol., 517, 803814, https://doi.org/10.1016/j.jhydrol.2014.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, https://doi.org/10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1997: Regional dependency of precipitation-altitude relationship in the Swiss Alps. Climatic Change, 36, 355369, https://doi.org/10.1023/A:1005302626066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, V., and M. K. Goyal, 2016: Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmos. Res., 167, 3460, https://doi.org/10.1016/j.atmosres.2015.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036, https://doi.org/10.1175/1520-0434(2003)018<1018:OHIIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., R. Chen, Y. Song, Y. Yang, J. Liu, C. Han, and Z. Liu, 2017: Precipitation–altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains. Theor. Appl. Climatol., 134, 875884, https://doi.org/10.1007/s00704-017-2316-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS, and the School of Meteorology, University of Oklahoma, 5257 pp.

  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315324, https://doi.org/10.1002/j.1477-8696.1998.tb06408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., X. Qiu, Y. Zeng, W. Ren, B. Tao, H. Pan, T. Gao, and J. Gao, 2017: High-resolution precipitation downscaling in mountainous areas over China: Development and application of a statistical mapping approach. Int. J. Climatol., 38, 7793, https://doi.org/10.1002/joc.5162.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 157 157 6
Full Text Views 36 36 10
PDF Downloads 33 33 11

Climatology of Orographic Precipitation Gradients in the Contiguous Western United States

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

Orographic precipitation gradients (OPG) relating to the increase or decrease in precipitation amount with elevation are not well studied or analyzed except for case examples. A quality controlled daily OPG dataset for the western United States that is based on a linear regression framework of gauge precipitation observations and elevation for a 39-yr time period was created and analyzed to identify spatial and temporal patterns and variability in OPG and some of the drivers of variability on seasonal, annual, interannual, and climatological time scales. Most locations in the western United States experience positive OPG during most of the year, exhibiting an annual cycle with the highest magnitude of OPG in the winter season and lowest magnitude of OPG in the summer season. Coastal locations tend to have OPG with higher magnitude and larger variability in OPG than do interior locations during cool seasons. Empirical orthogonal function analysis identifies two principal components that account for 33% of the variability in a subset of the OPG dataset, and these modes of variability are related to precipitation amount and atmospheric circulation over the Pacific Ocean. Comparison of daily OPG with similarly calculated 3-day and monthly OPG identifies that OPG magnitudes are sensitive to the choice of length of the precipitation accumulation period.

Corresponding author: Lucas Bohne, lucas.bohne@utah.edu

Abstract

Orographic precipitation gradients (OPG) relating to the increase or decrease in precipitation amount with elevation are not well studied or analyzed except for case examples. A quality controlled daily OPG dataset for the western United States that is based on a linear regression framework of gauge precipitation observations and elevation for a 39-yr time period was created and analyzed to identify spatial and temporal patterns and variability in OPG and some of the drivers of variability on seasonal, annual, interannual, and climatological time scales. Most locations in the western United States experience positive OPG during most of the year, exhibiting an annual cycle with the highest magnitude of OPG in the winter season and lowest magnitude of OPG in the summer season. Coastal locations tend to have OPG with higher magnitude and larger variability in OPG than do interior locations during cool seasons. Empirical orthogonal function analysis identifies two principal components that account for 33% of the variability in a subset of the OPG dataset, and these modes of variability are related to precipitation amount and atmospheric circulation over the Pacific Ocean. Comparison of daily OPG with similarly calculated 3-day and monthly OPG identifies that OPG magnitudes are sensitive to the choice of length of the precipitation accumulation period.

Corresponding author: Lucas Bohne, lucas.bohne@utah.edu
Save