• Barth, N. A., G. Villarini, M. A. Nayak, and K. White, 2017: Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res., 53, 257269, https://doi.org/10.1002/2016WR019064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beguería, S., M. Angulo-Martinez, S. M. Vicente-Serrano, J. I. Lopez-Moreno, and A. El-Kenawy, 2011: Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast Spain from 1930 to 2006. Int. J. Climatol., 31, 21022114, https://doi.org/10.1002/joc.2218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, B., M. Leonard, Y. Deng, and S. Westra, 2018: An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol., 567, 435445, https://doi.org/10.1016/j.jhydrol.2018.10.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan, 2016: Dominant flood generating mechanisms across the United States. Geophys. Res. Lett., 43, 43824390, https://doi.org/10.1002/2016GL068070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blume, T., E. Zehe, and A. Bronstert, 2007: Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrol. Sci. J., 52, 843862, https://doi.org/10.1623/hysj.52.5.843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, https://doi.org/10.1016/j.agrformet.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., T. H. Painter, W. R. Currier, J. D. Lundquist, and D. P. Lettenmaier, 2018: Estimation of precipitation over the OLYMPEX domain during winter 2015/16. J. Hydrometeor., 19, 143160, https://doi.org/10.1175/JHM-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., A. Mehran, F. M. Ralph, and D. P. Lettenmaier, 2019: The role of hydrological initial conditions on atmospheric river floods in the Russian River basin. J. Hydrometeor., 20, 16671686, https://doi.org/10.1175/JHM-D-19-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Y. Gao, Y. Liu, M. Wigmosta, and M. Richmond, 2018: Predictability of extreme precipitation in western U.S. watersheds based on atmospheric river occurrence, intensity, and duration. Geophys. Res. Lett., 45, 11 69311 701, https://doi.org/10.1029/2018GL079831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, M. Wigmosta, and M. Richmond, 2019: Impact of atmospheric rivers on surface hydrological processes in western U.S. watersheds. J. Geophys. Res. Atmos., 124, 88968916, https://doi.org/10.1029/2019JD030468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., F. Chen, R. H. Reichle, and Q. Liu, 2017: L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting. Geophys. Res. Lett., 44, 54955503, https://doi.org/10.1002/2017GL073642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California – A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., F. M. Ralph, T. Das, P. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 42994308, https://doi.org/10.1029/2017GL076968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, M. A., A. M. Wilson, and F. M. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and et al. , 2019: Precipitation regime change in western North America: The role of atmospheric rivers. Sci. Rep., 9, 9944, https://doi.org/10.1038/s41598-019-46169-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivancic, T. J., and S. B. Shaw, 2015: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133, 681693, https://doi.org/10.1007/s10584-015-1476-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949–2015. Geophys. Res. Lett., 44, 11 45611 462, https://doi.org/10.1002/2017GL075399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, M., T. Ouarda, and B. Bobee, 1999: Towards operational guidelines for over-threshold modeling. J. Hydrol., 225, 103117, https://doi.org/10.1016/S0022-1694(99)00167-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2017: Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theor. Appl. Climatol., 130, 345363, https://doi.org/10.1007/s00704-016-1881-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., A. AghaKouchak, and M. Sadegh, 2019: Climate-induced changes in the risk of hydrological failure of major dams in California. Geophys. Res. Lett., 46, 21302139, https://doi.org/10.1029/2018GL081888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., G. Kayser, L. Doyle, and A. W. Wood, 2018: Adjusting flood peak frequency changes to account for climate change impacts in the western United States. J. Water Resour. Plann. Manage., 144, 05017025, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, E. P., U. Ulbrich, and H. W. Rust, 2019: The diurnal nature of future extreme precipitation intensification. Geophys. Res. Lett., 46, 76807689, https://doi.org/10.1029/2019GL082385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos., 120, 11 17311 190, https://doi.org/10.1002/2015JD023586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and et al. , 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143157, https://doi.org/10.1038/s43017-020-0030-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, W. A., Z. Duan, N. Sun, M. S. Wigmosta, M. C. Richmond, X. Chen, and L. R. Leung, 2019: Parallel Distributed Hydrology Soil Vegetation Model (DHSVM) using global arrays. Environ. Modell. Software, 122, 104533, https://doi.org/10.1016/j.envsoft.2019.104533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., A. L. Westerling, and J. Oyler, 2013a: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system. Hydrol. Earth Syst. Sci., 17, 18331850, https://doi.org/10.5194/hess-17-1833-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and et al. , 2013b: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, https://doi.org/10.1007/s00382-012-1337-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using Localized Constructed Analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep., 7, 10783, https://doi.org/10.1038/s41598-017-11285-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. Wick, S. Gutman, M. Dettinger, D. Cayan, and A. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2018: ARTMIP-early start comparison of atmospheric river detection tools: How many atmospheric rivers hit Northern California’s Russian river watershed? Climate Dyn., 52, 49734994, https://doi.org/10.1007/S00382-018-4427-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., J. T. Abatzoglou, K. C. Hegewisch, and P. W. Mote, 2013: Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos., 118, 10 88410 906, https://doi.org/10.1002/JGRD.50843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., C. Wasko, and D. P. Lettenmaier, 2018: If precipitation extremes are increasing, why aren’t floods? Water Resour. Res., 54, 85458551, https://doi.org/10.1029/2018WR023749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and J. T. Kiehl, 2016: Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett., 43, 87758782, https://doi.org/10.1002/2016GL070470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, https://doi.org/10.1175/JCLI3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USWRC, 1982: Guidelines for determining flood flow frequency. Bulletin 17B, United States Water Resources Committee, 194 pp., https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf.

  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2015: Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2017: Global assessment of flood and storm extremes with increased temperatures. Sci. Rep., 7, 7945, https://doi.org/10.1038/s41598-017-08481-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and R. Nathan, 2019: Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol., 575, 432441, https://doi.org/10.1016/j.jhydrol.2019.05.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., R. Mehrotra, A. Sharma, and R. Srikanthan, 2012: Continuous rainfall simulation: 1—A regionalised sub-daily disaggregation approach. Water Resour. Res., 48, W01535, https://doi.org/10.1029/2011WR010489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., J. P. Evans, R. Mehrotra, and A. Sharma, 2013: A conditional disaggregation algorithm for generating fine time-scale rainfall data in a warmer climate. J. Hydrol., 479, 8699, https://doi.org/10.1016/j.jhydrol.2012.11.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and et al. , 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, G., H. L. Gao, B. S. Naz, S. C. Kao, and N. Voisin, 2016: Integrating a reservoir regulation scheme into a spatially distributed hydrological model. Adv. Water Resour., 98, 1631, https://doi.org/10.1016/j.advwatres.2016.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 318 318 31
Full Text Views 90 90 24
PDF Downloads 115 115 26

Floods due to Atmospheric Rivers along the U.S. West Coast: The Role of Antecedent Soil Moisture in a Warming Climate

View More View Less
  • 1 Department of Geography, University of California, Los Angeles, Los Angeles, California
  • | 2 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 3 Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington
  • | 4 Department of Geography, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Precipitation extremes are projected to become more frequent along the U.S. West Coast due to increased atmospheric river (AR) activity, but the frequency of less intense precipitation events may decrease. Antecedent soil moisture (ASM) conditions can have a large impact on flood responses, especially if prestorm precipitation decreases. Taken together with increased antecedent evaporative demand due to warming, this would result in reduced soil moisture at the onset of extreme precipitation events. We examine the impact of ASM on AR-related floods in a warming climate in three basins that form a transect along the U.S. Pacific Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We ran the Distributed Hydrology Soil Vegetation Model (DHSVM) over the three river basins using forcings downscaled from 10 global climate models (GCMs). We examined the dynamic role of ASM by comparing the changes in the largest 50, 100, and 150 extreme events in two periods, 1951–2000 and 2050–99. In the Chehalis basin, the projected fraction of AR-related extreme discharge events slightly decreases. In the Russian basin, this fraction increases, however, and more substantially so in the Santa Margarita basin. This is due to increases in AR-related extreme precipitation events, as well as the fact that the relationship of extreme precipitation to extreme discharge is strengthened by projected increases in year-to-year volatility of annual precipitation in California, which increases the likelihood of concurrent occurrence of large storms and wet ASM conditions.

Corresponding author: Dennis P. Lettenmaier, dlettenm@ucla.edu

Abstract

Precipitation extremes are projected to become more frequent along the U.S. West Coast due to increased atmospheric river (AR) activity, but the frequency of less intense precipitation events may decrease. Antecedent soil moisture (ASM) conditions can have a large impact on flood responses, especially if prestorm precipitation decreases. Taken together with increased antecedent evaporative demand due to warming, this would result in reduced soil moisture at the onset of extreme precipitation events. We examine the impact of ASM on AR-related floods in a warming climate in three basins that form a transect along the U.S. Pacific Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We ran the Distributed Hydrology Soil Vegetation Model (DHSVM) over the three river basins using forcings downscaled from 10 global climate models (GCMs). We examined the dynamic role of ASM by comparing the changes in the largest 50, 100, and 150 extreme events in two periods, 1951–2000 and 2050–99. In the Chehalis basin, the projected fraction of AR-related extreme discharge events slightly decreases. In the Russian basin, this fraction increases, however, and more substantially so in the Santa Margarita basin. This is due to increases in AR-related extreme precipitation events, as well as the fact that the relationship of extreme precipitation to extreme discharge is strengthened by projected increases in year-to-year volatility of annual precipitation in California, which increases the likelihood of concurrent occurrence of large storms and wet ASM conditions.

Corresponding author: Dennis P. Lettenmaier, dlettenm@ucla.edu
Save