• AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, https://doi.org/10.1029/2010JD014741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and et al. , 2014: NASA GPM-Ground Validation Integrated Precipitation and Hydrology Experiment 2014 Science Plan. Duke University Tech. Rep., 64 pp., https://doi.org/10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Boyle, J., 2014: From the archives: Impact of Frances, Ivan lingers years later. Asheville Citizen-Times, 6 September, accessed 1 April 2018, https://www.citizen-times.com/story/news/local/2014/09/06/hurricanes-frances-ivan-impact-lingers-years-later/15217637/.

  • Brunetti, M. T., M. Melillo, S. Peruccacci, L. Ciabatta, and L. Brocca, 2018: How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens. Environ., 210, 6575, https://doi.org/10.1016/j.rse.2018.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvello, M., R. N. D’Orsi, L. Piciullo, N. M. Paes, M. A. Magalhaes, R. Coelho, and W. A. Lacerda, 2015: The community-based alert and alarm system for rainfall induced landslides in Rio de Janeiro, Brazil. Landslide Processes, G. Lollino et al., Eds., Vol. 2, Engineering Geology for Society and Territory, Springer, 653–657, https://doi.org/10.1007/978-3-319-09057-3_109.

    • Crossref
    • Export Citation
  • Carter, A., 2018: “Shouldn’t you have a right to know?” Daughter of landslide victim says warnings needed. News & Observer, 4 June, https://www.newsobserver.com/latest-news/article212367984.html.

  • Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613626, https://doi.org/10.1016/j.jhydrol.2009.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, F. C., C. F. Lee, and Y. Y. Ngai, 2002: Landslide risk assessment and management: An overview. Eng. Geol., 64, 6587, https://doi.org/10.1016/S0013-7952(01)00093-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., and et al. , 2019: Evaluation of GPM-era global satellite precipitation products over multiple complex terrain regions. Remote Sens., 11, 2936, https://doi.org/10.3390/rs11242936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devoli, G., I. Kleivane, M. Sund, N. K. Orthe, R. Ekker, E. Johnsen, and H. Colleuille, 2015: Landslide early warning system and web tools for real-time scenarios and for distribution of warning messages in Norway. Landslide Processes, G. Lollino et al., Eds., Vol. 2, Engineering Geology for Society and Territory, Springer, 625–629, https://doi.org/10.1007/978-3-319-09057-3_104.

    • Search Google Scholar
    • Export Citation
  • Dilley, M., R. S. Chen, U. Deichmann, A. L. Lerner-Lam, and M. Arnold, 2005: Natural Disaster Hotspots: A Global Risk Analysis. World Bank Publications, 132 pp., https://doi.org/10.1596/0-8213-5930-4.

    • Search Google Scholar
    • Export Citation
  • Doom, J., 2018: Landslide kills two in North Carolina. ABC News, 31 May, https://abcnews.go.com/US/landslide-kills-north-carolina/story?id=55553200.

  • Fang, H., H. K. Beaudoing, M. Rodell, W. L. Teng, and B. E. Vollmer, 2009: Global Land Data Assimilation System (GLDAS) products, services and application from NASA Hydrology Data and Information Services Center (HDISC). ASPRS 2009 Annual Conf., Baltimore, MD, American Society for Photogrammetry and Remote Sensing, 9 pp., https://www.asprs.org/a/publications/proceedings/baltimore09/0020.pdf.

  • Farahmand, A., and A. AghaKouchak, 2013: A satellite-based global landslide model. Nat. Hazards Earth Syst. Sci., 13, 12591267, https://doi.org/10.5194/nhess-13-1259-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and et al. , 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-Era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, https://doi.org/10.1109/TGRS.2012.2199121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froude, M. J., and D. N. Petley, 2018: Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 18, 21612181, https://doi.org/10.5194/nhess-18-2161-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and F. Hossain, 2013: Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Trans. Geosci. Remote Sens., 51, 704718, https://doi.org/10.1109/TGRS.2012.2196282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and F. Hossain, 2014: Making satellite precipitation data work for the developing world. IEEE Geosci. Remote Sens. Mag., 2, 2436, https://doi.org/10.1109/MGRS.2014.2317561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2007: Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteor. Atmos. Phys., 98, 239267, https://doi.org/10.1007/s00703-007-0262-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, and G. Huffman, 2006: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett., 33, L22402, https://doi.org/10.1029/2006GL028010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, and G. Huffman, 2007: Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat. Hazards, 43, 245256, https://doi.org/10.1007/s11069-006-9104-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2017: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA Tech. Doc., 54 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_technical_doc_3_22_17.pdf.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, https://doi.org/10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., and T. Stanley, 2018: Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Earth’s Future, 6, 505523, https://doi.org/10.1002/2017EF000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., R. Adler, Y. Hong, S. Hill, and A. Lerner-Lam, 2010: A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards, 52, 561575, https://doi.org/10.1007/s11069-009-9401-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., T. Stanley, and Y. Zhou, 2015a: Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249, 415, https://doi.org/10.1016/j.geomorph.2015.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., T. Stanley, and J. Simmons, 2015b: A dynamic landslide hazard assessment system for Central America and Hispaniola. Hazards Earth Syst. Sci, 15, 22572272, https://doi.org/10.5194/nhess-15-2257-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., N. Karbalaee, K. Hsu, and Y. Hong, 2018: Probabilistic precipitation rate estimates with space-based infrared sensors. Quart. J. Roy. Meteor. Soc., 144, 191205, https://doi.org/10.1002/qj.3243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krøgli, I. K., G. Devoli, H. Colleuille, S. Boje, M. Sund, and I. K. Engen, 2018: The Norwegian forecasting and warning service for rainfall-and snowmelt-induced landslides. Hazards Earth Syst. Sci, 18, 14271450, https://doi.org/10.5194/nhess-18-1427-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., 2011: GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 1 February 2018, https://doi.org/10.5065/D6PG1QDD.

    • Crossref
    • Export Citation
  • Maggioni, V., R. H. Reichle, and E. N. Anagnostou, 2011: The effect of satellite rainfall error modeling on soil moisture prediction uncertainty. J. Hydrometeor., 12, 413428, https://doi.org/10.1175/2011JHM1355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., M. R. P. Sapiano, R. F. Adler, Y. Tian, and G. J. Huffman, 2014: An error model for uncertainty quantification in high-time-resolution precipitation products. J. Hydrometeor., 15, 12741292, https://doi.org/10.1175/JHM-D-13-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., M. R. P. Sapiano, and R. F. Adler, 2016: Estimating uncertainties in high-resolution satellite precipitation products: Systematic or random error? J. Hydrometeor., 17, 11191129, https://doi.org/10.1175/JHM-D-15-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and et al. , 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., E. N. Anagnostou, F. Hossain, M. Gebremichael, and M. Borga, 2010: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeor., 11, 520532, https://doi.org/10.1175/2009JHM1169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., E. Destro, V. Maggioni, F. Marra, and M. Borga, 2017: Satellite rainfall estimates for debris flow prediction: An evaluation based on rainfall accumulation–duration thresholds. J. Hydrometeor., 18, 22072214, https://doi.org/10.1175/JHM-D-17-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osanai, N., I. Takeshi, S. I. Kazumasa, K. I. Shinichi Kojima, and T. Noro, 2010: Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides, 7, 325338, https://doi.org/10.1007/s10346-010-0229-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petley, D., 2012: Global patterns of loss of life from landslides. Geology, 40, 927930, https://doi.org/10.1130/G33217.1.

  • Petley, D., S. A. Dunning, and N. J. Rosser, 2005: The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. Landslide Risk Management, O. Hungr et al., Eds., CRC Press, 367–374.

  • Piciullo, L., S. L. Gariano, M. Melillo, M. T. Brunetti, S. Peruccacci, F. Guzzetti, and M. Calvello, 2017: Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides, 14, 9951008, https://doi.org/10.1007/s10346-016-0750-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, M., and et al. , 2012: SANF : National warning system for rainfall-induced landslides in Italy. Landslides and Engineered Slopes: Protecting Society through Improved Understanding, E. Eberhardt et al., Eds., CRC Press, 1895–1899, https://doi.org/10.13140/2.1.4857.9527.

    • Crossref
    • Export Citation
  • Saha, S., and et al. , 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Sassa, K., P. Canuti, and Y. Yin, Eds., 2014: Methods of Landslide Studies. Vol. 2, Landslide Science for a Safer Geoenvironment, Springer, 851 pp., https://doi.org/10.1007/978-3-319-05050-8.

    • Crossref
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, https://doi.org/10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, https://doi.org/10.1175/JAMC-D-12-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, T., and D. B. Kirschbaum, 2017: A heuristic approach to global landslide susceptibility mapping. Nat. Hazards, 87, 145164, https://doi.org/10.1007/s11069-017-2757-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., and F. Hossain, 2009: Transfer of satellite rainfall error from gaged to ungaged locations: How realistic will it be for the global precipitation mission? Geophys. Res. Lett., 36, L10405, https://doi.org/10.1029/2009GL037965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., and F. Hossain, 2012: Investigating the similarity of satellite rainfall error metrics as a function of Köppen climate classification. Atmos. Res., 104-105, 182192, https://doi.org/10.1016/j.atmosres.2011.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and et al. , 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and et al. , 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., G. J. Huffman, R. F. Adler, L. Tang, M. Sapiano, V. Maggioni, and H. Wu, 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett., 40, 20602065, https://doi.org/10.1002/grl.50320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, J. A., and D. I. Singham, 2012: Slope stability assessment using stochastic rainfall simulation. Procedia Comput. Sci., 9, 699706, https://doi.org/10.1016/j.procs.2012.04.075.

    • Search Google Scholar
    • Export Citation
  • Wooten, R. M., A. C. Witt, C. F. Miniat, T. C. Hales, and J. L. Aldred, 2016: Frequency and magnitude of selected historical landslide events in the southern appalachian highlands of North Carolina and Virginia: Relationships to rainfall, geological and ecohydrological controls, and effects. Natural Disturbances and Historic Range of Variation, C. Greenberg and B. Collins, Eds., Managing Forest Ecosystems Series, Vol 32, Springer, 203–262, https://doi.org/10.1007/978-3-319-21527-3_9.

    • Crossref
    • Export Citation
  • Wright, D. B., 2018: Rainfall information for global flood modeling. Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting, G. Schumann et al., Eds., John Wiley & Sons, 19–42.

    • Crossref
    • Export Citation
  • Wright, D. B., D. B. Kirschbaum, and S. Yatheendradas, 2017: Satellite precipitation characterization, error modeling, and error correction using censored shifted gamma distributions. J. Hydrometeor., 18, 28012815, https://doi.org/10.1175/JHM-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, https://doi.org/10.1175/JHM-D-11-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 201 28
Full Text Views 54 54 9
PDF Downloads 70 70 13

Incorporation of Satellite Precipitation Uncertainty in a Landslide Hazard Nowcasting System

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association/GESTAR, Columbia, Maryland
  • | 4 Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.

Corresponding author: Samantha H. Hartke, shartke@wisc.edu

Abstract

Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.

Corresponding author: Samantha H. Hartke, shartke@wisc.edu
Save