• Alkama, R., M. Kageyama, and G. Ramstein, 2010: Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modelling approach using the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. J. Geophys. Res., 115, D17112, https://doi.org/10.1029/2009JD013408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and et al. , 2008: Human-induced changes in the hydrology of the Western United States. Science, 319, 10801083, https://doi.org/10.1126/SCIENCE.1152538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, D. A., J. Klaus, and M. R. McHale, 2007: Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol., 336, 155170, https://doi.org/10.1016/j.jhydrol.2006.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos., 119, 2338, https://doi.org/10.1002/2013JD020792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and J. M. Norman, 1998: An Introduction to Environmental Biophysics. 2nd ed. Springer, 286 pp.

    • Crossref
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the north Pacific during boreal winter since 1900. J. Climate, 17, 31093124, https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., 2012: Impacts of climate change on the surface water balance of the central United States. M.S. thesis, School of Natural Resources, University of Nebraska–Lincoln, 178 pp., https://digitalcommons.unl.edu/natresdiss/57/.

  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the Globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2017: The uncertainties and causes of the recent changes in global evapotranspiration from 1982–2010. Climate Dyn., 49, 279296, https://doi.org/10.1007/s00382-016-3342-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., A. Dai, M. Vuille, and O. Elison Timm, 2018: Asymmetric modulation of ENSO teleconnections by the interdecadal Pacific oscillation. J. Climate, 31, 73377361, https://doi.org/10.1175/JCLI-D-17-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, S., 2003: The impact of cropland cover on river nutrient levels in the Mississippi River Basin. Global Ecol. Biogeogr., 12, 341355, https://doi.org/10.1046/j.1466-822X.2003.00032.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, S., and C. J. Kucharik, 2003: Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Global Biogeochem. Cycles, 17, 1085, https://doi.org/10.1029/2001GB001808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elguindi, N., S. Somot, M. Déqué, and W. Ludwig, 2011: Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: Impact of climate model resolution. Climate Dyn., 36, 205228, https://doi.org/10.1007/s00382-009-0715-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States. J. Geophys. Res., 112, D15109, https://doi.org/10.1029/2007JD008397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, https://doi.org/10.1029/96GB02692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glotter, M., and J. Elliott, 2016: Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants, 3, 16193, https://doi.org/10.1038/nplants.2016.193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, https://doi.org/10.1038/ngeo2247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82, 219246, https://doi.org/10.1175/1520-0477(2001)082<0219:HPAHSI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and et al. , 2014: Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA, 111, 32513256, https://doi.org/10.1073/pnas.1222475110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., J. A. Torres-Alavez, and M. Van Den Broeke, 2018: Land-cover change and the “Dust Bowl” drought in the U.S. Great Plains. J. Climate, 31, 46574667, https://doi.org/10.1175/JCLI-D-17-0515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., A. D. Richardson, K. J. McGuire, and K. Hayhoe, 2009: Climate and hydrological changes in the northeastern United States: Recent trends and implications for forested and aquatic ecosystems. Can. J. For. Res., 39, 199212, https://doi.org/10.1139/X08-116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurd, B., N. Leary, R. Jones, and J. Smith, 1999: Relative regional vulnerability of water resources to climate change. J. Amer. Water Resour. Assoc., 35, 13991409, https://doi.org/10.1111/j.1752-1688.1999.tb04224.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin & Co, 202 pp.

  • Kramer, R. J., and B. J. Soden, 2016: The sensitivity of the hydrological cycle to internal climate variability versus anthropogenic climate change. J. Climate, 29, 36613673, https://doi.org/10.1175/JCLI-D-15-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., 2003: Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the interannual variability in maize yield. Earth Interact., 7, https://doi.org/10.1175/1087-3562(2003)007<0001:EOAPAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., 2006: A multidecadal trend of earlier corn planting in the central U.S. Agron. J., 98, 15441550, https://doi.org/10.2134/agronj2006.0156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., 2008: Contribution of planting date trends to increased maize yields in the central United States. Agron. J., 100, 328336, https://doi.org/10.2134/agronj2007.0145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and K. R. Brye, 2003: Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J. Environ. Qual., 32, 247268, https://doi.org/10.2134/jeq2003.2470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and T. E. Twine, 2007: Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric. For. Meteor., 146, 134158, https://doi.org/10.1016/j.agrformet.2007.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and et al. , 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795825, https://doi.org/10.1029/1999GB001138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and A. Robson, 2000: Detecting trend and other changes in hydrological data. WCDMP-45, WMO-TD 1013, World Meteorological Organization, 157 pp.

  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, https://doi.org/10.1175/JCLI-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E. A., and M. Tollenaar, 2007: Physiological basis of successful breeding strategies for maize grain yield. Crop Sci., 47, S202S215, https://doi.org/10.2135/cropsci2007.04.0010IPBS.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., M. T. Coe, and J. A. Foley, 2000: Surface water balance of the continental United States, 1963–1995: Regional evaluation of a terrestrial biosphere model and the NCEP/NCAR reanalysis. J. Geophys. Res., 105, 22 39322 425, https://doi.org/10.1029/2000JD900277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., and S. J. Burges, 1978: Climate change: Detection and its impact on hydrologic design. Water Resour. Res., 14, 679687, https://doi.org/10.1029/WR014i004p00679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., E. F. Wood, and J. R. Wallis, 1994: Hydro-climatological trends in the continental United States, 1948–88. J. Climate, 7, 586607, https://doi.org/10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lins, H. F., and J. R. Slack, 1999: Streamflow trends in the United States. Geophys. Res. Lett., 26, 227230, https://doi.org/10.1029/1998GL900291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., C. Hu, J. E. Olesen, Z. Ju, and X. Zhang, 2016: Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014. Climatic Change, 139, 565578, https://doi.org/10.1007/s10584-016-1825-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., J. Jin, and L. M. Kueppers, 2015: Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop). Climate Dyn., 45, 33473363, https://doi.org/10.1007/s00382-015-2543-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and K. G. Hubbard, 2004: An analysis of simulated long-term soil moisture data for three land uses under contrasting hydroclimatic conditions in the northern Great Plains. J. Hydrometeor., 5, 160179, https://doi.org/10.1175/1525-7541(2004)005<0160:AAOSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2002: A step increase in streamflow in the conterminous United States. Geophys. Res. Lett., 29, 2185, https://doi.org/10.1029/2002GL015999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C., and K. Dunne, 2001: Trends in evaporation and surface cooling in the Mississippi River basin. Geophys. Res. Lett., 28, 12191222, https://doi.org/10.1029/2000GL012321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C., K. A. Dunne, and A. V. Vecchia, 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, https://doi.org/10.1038/nature04312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., K. A. Cherkauer, D. Niyogi, M. Lei, B. C. Pijanowski, D. K. Ray, L. C. Bowling, and G. Yang, 2010: A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States. Int. J. Climatol., 30, 20252044, https://doi.org/10.1002/joc.2095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2018: Drought variability and trends over the Central United States in the instrumental record. J. Hydrometeor., 19, 11491166, https://doi.org/10.1175/JHM-D-17-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monfreda, C., N. Ramankutty, and J. A. Foley, 2008: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles, 22, GB1022, https://doi.org/10.1029/2007GB002947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mykleby, P. M., and et al. , 2016: Energy and water balance response of a vegetated wetland to herbicide treatment of invasive Phragmites australis. J. Hydrol., 539, 290303, https://doi.org/10.1016/j.jhydrol.2016.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329, https://doi.org/10.1073/pnas.0808533106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, and K. E. Trenberth, 2007: Hydroclimatic trends in the Mississippi river basin from 1948 to 2004. J. Climate, 20, 45994614, https://doi.org/10.1175/JCLI4262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecol. Biogeogr., 8, 381396, https://doi.org/10.1046/j.1365-2699.1999.00141.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles, 22, GB1003, https://doi.org/10.1029/2007GB002952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182190, https://doi.org/10.1029/WR017i001p00182.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., and D. A. Wright, 1984: WGEN: A model for generating daily weather variables. USDA Publ. ARS-8, 83 pp.

  • Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, https://doi.org/10.1029/2007GL031166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., and C. J. Kucharik, 2011: Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric. For. Meteor., 151, 882894, https://doi.org/10.1016/j.agrformet.2011.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of regression coefficients based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shelton, M. L., 2009: Hydroclimatology: Perspectives and Applications. Cambridge University Press, 426 pp.

    • Crossref
    • Export Citation
  • Song, Y., A. K. Jain, and G. F. McIsaac, 2013: Implementation of dynamic crop growth processes into a land surface model: Evaluation of energy, water and carbon fluxes under corn and soybean rotation. Biogeosciences, 10, 80398066, https://doi.org/10.5194/bg-10-8039-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soylu, M. E., C. J. Kucharik, and S. P. Loheide, 2014: Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem—Variably saturated soil water flow model. Agric. For. Meteor., 189–190, 198210, https://doi.org/10.1016/j.agrformet.2014.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiel, H., 1950: A rank-invariant method for linear and polynomial regression analysis: Part 3. Proc. K. Ned. Akad. Wet., Ser. A, 53, 13971412.

    • Search Google Scholar
    • Export Citation
  • Tollenaar, M., J. Fridgen, P. Tyagi, P. W. Stackhouse Jr., and S. Kumudini, 2017: The contribution of solar brightening to the US maize yield trend. Nat. Climate Change, 7, 275278, https://doi.org/10.1038/nclimate3234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollerud, H., J. Brown, T. Loveland, R. Mahmood, and N. Bliss, 2018: Drought and land-cover conditions in the Great Plains. Earth Interact., 22, https://doi.org/10.1175/EI-D-17-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T. E., C. J. Kucharik, and J. A. Foley, 2004: Effects of land cover change on the energy and water balance of the Mississippi River basin. J. Hydrometeor., 5, 640655, https://doi.org/10.1175/1525-7541(2004)005<0640:EOLCCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanLoocke, A., C. J. Bernacchi, and T. E. Twine, 2010: The impacts of Miscanthus × giganteus production on the Midwest US hydrologic cycle. Global Change Biol. Bioenergy, 2, 180191, https://doi.org/10.1111/j.1757-1707.2010.01053.x.

    • Search Google Scholar
    • Export Citation
  • VanLoocke, A., T. E. Twine, M. Zeri, and C. J. Bernacchi, 2012: A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agric. For. Meteor., 164, 8295, https://doi.org/10.1016/j.agrformet.2012.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., J. A. Foley, C. J. Kucharik, and M. T. Coe, 2006: Evaluating the seasonal and interannual variations in water balance in northern Wisconsin using a land surface model. J. Geophys. Res., 111, G02025, https://doi.org/10.1029/2005JG000112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, M. T., D. S. Wilks, J. Y. Parlange, and R. L. Schneider, 2004: Increasing evapotranspiration from the conterminous United States. J. Hydrometeor., 5, 405408, https://doi.org/10.1175/1525-7541(2004)005<0405:IEFTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and et al. , 2016: On the long-term hydroclimatic sustainability of perennial bioenergy crop expansion over the United States. J. Climate, 30, 25352557, https://doi.org/10.1175/JCLI-D-16-0610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, and E. Wood, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yue, S., P. Pilon, and G. Cavadias, 2002: Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol., 259, 254271, https://doi.org/10.1016/S0022-1694(01)00594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., Y. Ren, Z. Y. Yin, Z. Lin, and D. Zheng, 2009: Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res., 114, D15105, https://doi.org/10.1029/2009JD011753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. K., and K. E. Schilling, 2006: Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J. Hydrol., 324, 412422, https://doi.org/10.1016/j.jhydrol.2005.09.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., A. Dai, and B. Dong, 2018: Change in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteor., 249, 198209, https://doi.org/10.1016/j.agrformet.2017.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., N. Voisin, G. Leng, M. Huang, and I. Kraucunas, 2018: Sensitivity of regulated flow regimes to climate change in the western United States. J. Hydrometeor., 19, 499515, https://doi.org/10.1175/JHM-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 155 155 17
Full Text Views 48 48 6
PDF Downloads 48 48 6

Decadal-Scale Changes in the Seasonal Surface Water Balance of the Central United States from 1984 to 2007

View More View Less
  • 1 National Centre for Earth Observation, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 3 Bureau of Water Quality, Wisconsin Department of Natural Resources, Trout Lake Station, Boulder Junction, Wisconsin
  • | 4 Center for Limnology, University of Wisconsin–Madison, Boulder Junction, Wisconsin
  • | 5 Great Lakes Research Center, Michigan Technological University, Houghton, Michigan
  • | 6 Department of Agronomy, and Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin–Madison, Madison, Wisconsin
  • | 7 Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
  • | 8 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia
  • | 9 Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, Minnesota
© Get Permissions
Restricted access

Abstract

Variations in climate have important influences on the hydrologic cycle. Observations over the continental United States in recent decades show substantial changes in hydrologically significant variables, such as decreases in cloud cover and increases in solar radiation (i.e., solar brightening), as well as increases in air temperature, changes in wind speed, and seasonal shifts in precipitation rate and rain/snow ratio. Impacts of these changes on the regional water cycle from 1984 to 2007 are evaluated using a terrestrial ecosystem/land surface hydrologic model (Agro-IBIS). Results show an acceleration of various components of the surface water balance in the Upper Mississippi, Missouri, Ohio, and Great Lakes basins over the 24-yr period, but with significant seasonal and spatial complexity. Evapotranspiration (ET) has increased across most of our study domain and seasons. The largest increase is found in fall, when solar brightening trends are also particularly significant. Changes in runoff are characterized by distinct spatial and seasonal variations, with the impact of precipitation often being muted by changes in ET and soil-water storage rate. In snow-dominated regions, such as the northern Great Lakes basin, spring runoff has declined significantly due to warmer air temperatures and an associated decreasing ratio of snow in total precipitation during the cold season. In the northern Missouri basin, runoff shows large increases in all seasons, primarily due to increases in precipitation. The responses to these changes in the regional hydrologic cycle depend on the underlying land cover type—maize, soybean, and natural vegetation. Comparisons are also made with other hydroclimatic time series to place the decadal-scale variability in a longer-term context.

Corresponding author: Bo Dong, bo.dong@reading.ac.uk

Abstract

Variations in climate have important influences on the hydrologic cycle. Observations over the continental United States in recent decades show substantial changes in hydrologically significant variables, such as decreases in cloud cover and increases in solar radiation (i.e., solar brightening), as well as increases in air temperature, changes in wind speed, and seasonal shifts in precipitation rate and rain/snow ratio. Impacts of these changes on the regional water cycle from 1984 to 2007 are evaluated using a terrestrial ecosystem/land surface hydrologic model (Agro-IBIS). Results show an acceleration of various components of the surface water balance in the Upper Mississippi, Missouri, Ohio, and Great Lakes basins over the 24-yr period, but with significant seasonal and spatial complexity. Evapotranspiration (ET) has increased across most of our study domain and seasons. The largest increase is found in fall, when solar brightening trends are also particularly significant. Changes in runoff are characterized by distinct spatial and seasonal variations, with the impact of precipitation often being muted by changes in ET and soil-water storage rate. In snow-dominated regions, such as the northern Great Lakes basin, spring runoff has declined significantly due to warmer air temperatures and an associated decreasing ratio of snow in total precipitation during the cold season. In the northern Missouri basin, runoff shows large increases in all seasons, primarily due to increases in precipitation. The responses to these changes in the regional hydrologic cycle depend on the underlying land cover type—maize, soybean, and natural vegetation. Comparisons are also made with other hydroclimatic time series to place the decadal-scale variability in a longer-term context.

Corresponding author: Bo Dong, bo.dong@reading.ac.uk
Save