• Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y. Lee, and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961980, https://doi.org/10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613, https://doi.org/10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and et al. , 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., and P. Xie, 2008: CPC unified gauge-based analysis of global daily precipitation. Western Pacific Geophysics Meeting, Cairns, QLD, Australia, Amer. Geophys. Union, Abstract A24A-05.

    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 19191934, https://doi.org/10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, A. B. M., M. G. Bosilovich, and R. D. Koster, 2016: Large-scale influences on summertime extreme precipitation in the northeastern United States. J. Hydrometeor., 17, 30453061, https://doi.org/10.1175/JHM-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Densmore, C. R., E. R. Sanabia, and B. S. Barrett, 2019: QBO influence on MJO amplitude over the maritime continent: Physical mechanisms and seasonality. Mon. Wea. Rev., 147, 389406, https://doi.org/10.1175/MWR-D-18-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, and J. J. Rutz, 2018: Empirical return periods of the most intense vapor transports during historical atmospheric river landfalls on the U.S. West Coast. J. Hydrometeor., 19, 13631377, https://doi.org/10.1175/JHM-D-17-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, F. Song, and J. Lu, 2018: Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the U.S. West Coast. J. Climate, 31, 80398058, https://doi.org/10.1175/JCLI-D-18-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldardiry, H., A. Mahmood, X. Chen, F. Hossain, B. Nijssen, and D. P. Lettenmaier, 2019: Atmospheric river–induced precipitation and snowpack during the western United States cold season. J. Hydrometeor., 20, 613630, https://doi.org/10.1175/JHM-D-18-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015a: MERRA-2 tavg1_2d_slv_Nx: 2d, 1-hourly, time-averaged, single-level, assimilation, single-level diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed May 2019, https://doi.org/10.5067/VJAFPLI1CSIV.

    • Crossref
    • Export Citation
  • GMAO, 2015b: MERRA-2 tavg1_2d_int_Nx: 2d,1-Hourly, time-averaged, single-level, assimilation, vertically integrated diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed May 2019, https://doi.org/10.5067/Q5GVUVUIVGO7.

    • Crossref
    • Export Citation
  • GMAO, 2015c: MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly, time-averaged, single-level, assimilation, surface flux diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed May 2019, https://doi.org/10.5067/7MCPBJ41Y0K6.

    • Crossref
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2018: An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeor., 19, 321337, https://doi.org/10.1175/JHM-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, H., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking. J. Climate, 30, 33813399, https://doi.org/10.1175/JCLI-D-16-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., B. Guan, D. E. Waliser, and D. P. Lettenmaier, 2019: Sensitivity of seasonal snowfall attribution to atmospheric rivers and their reanalysis-based detection. Geophys. Res. Lett., 46, 794803, https://doi.org/10.1029/2018GL080783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P., S. Abhik, H. H. Hendon, M. Bell, C. Lucas, A. G. Marshall, and E. C. J. Oliver, 2019: On the emerging relationship between the stratospheric Quasi-Biennial oscillation and the Madden-Julian oscillation. Sci. Rep., 9, 2981, https://doi.org/10.1038/s41598-019-40034-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., X. Ren, and X. Yang, 2016: Decadal changes in multiscale water vapor transport and atmospheric river associated with the Pacific decadal oscillation and the North Pacific Gyre oscillation. J. Hydrometeor., 17, 273285, https://doi.org/10.1175/JHM-D-14-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Seinkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. NASA/TM-2016-104606/Vol. 46, 61 pp., https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf.

  • Molod, A., and et al. , 2020: GEOS-S2S Version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. Barnes, and E. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and et al. , 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and et al. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 71337150, https://doi.org/10.1175/JCLI-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2016: Persistent landfalling atmospheric rivers over the west coast of North America. J. Geophys. Res. Atmos., 121, 13 28713 300, https://doi.org/10.1002/2016JD025549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837839, https://doi.org/10.1175/BAMS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2019: ARTMIP-early start comparison of atmospheric river detection tools: How many atmospheric rivers hit northern California’s Russian River watershed? Climate Dyn., 52, 49734994, https://doi.org/10.1007/s00382-018-4427-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. Mahanama, and G. S. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., and et al. , 2019: The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13 77713 802, https://doi.org/10.1029/2019JD030936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J. M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. West Coast winter precipitation during ENSO events. J. Climate, 26, 63606382, https://doi.org/10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and et al. , 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev., 10, 10691090, https://doi.org/10.5194/gmd-10-1069-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallis, J. R., M. G. Schaefer, B. L. Barker, and G. H. Taylor, 2007: Regional precipitation-frequency analysis and spatial mapping for 24-hour and 2-hour durations for Washington State. Hydrol. Earth Syst. Sci., 11, 415442, https://doi.org/10.5194/hess-11-415-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathè, 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, https://doi.org/10.1175/MWR-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 12211242, https://doi.org/10.1007/s00382-017-3675-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and B. Zhang, 2018: QBO-MJO connection. J. Geophys. Res. Atmos., 123, 29572967, https://doi.org/10.1002/2017JD028171.

All Time Past Year Past 30 Days
Abstract Views 99 99 8
Full Text Views 57 57 11
PDF Downloads 68 68 10

Large-Scale Influences on Atmospheric River–Induced Extreme Precipitation Events along the Coast of Washington State

View More View Less
  • 1 Universities Space Research Association, Columbia, and NASA Global Modeling and Assimilation Office, Greenbelt, Maryland
  • | 2 Florida State University, Tallahassee, Florida
  • | 3 NASA Global Modeling and Assimilation Office, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Transient, narrow plumes of strong water vapor transport, referred to as atmospheric rivers (ARs), are responsible for much of the precipitation along the West Coast of the United States. The most intense precipitation events are almost always induced by an AR on the coast of Oregon and Washington and can result in detrimental impacts on society due to mudslides and flooding. To accurately predict AR events on numerical weather prediction, subseasonal, and seasonal time scales, it is important to understand the large-scale impacts on extreme AR events. Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of Washington State. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest and are investigated here. The Madden–Julian oscillation (MJO) plays a role in determining the strength of precipitation associated with an AR on the Washington coast. Phase 5 of the MJO (convection centered over the Maritime Continent) is the most common phase during an extreme precipitation event, while phase 2 (convection over the Indian Ocean) discourages an extreme event from occurring. Interactions between El Niño–Southern Oscillation (ENSO) and the propagation speed of the MJO result in extreme events during phase 1 of the MJO and El Niño but phase 8 during neutral ESNO conditions.

Corresponding author: Allison Collow, allison.collow@nasa.gov

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Abstract

Transient, narrow plumes of strong water vapor transport, referred to as atmospheric rivers (ARs), are responsible for much of the precipitation along the West Coast of the United States. The most intense precipitation events are almost always induced by an AR on the coast of Oregon and Washington and can result in detrimental impacts on society due to mudslides and flooding. To accurately predict AR events on numerical weather prediction, subseasonal, and seasonal time scales, it is important to understand the large-scale impacts on extreme AR events. Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of Washington State. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest and are investigated here. The Madden–Julian oscillation (MJO) plays a role in determining the strength of precipitation associated with an AR on the Washington coast. Phase 5 of the MJO (convection centered over the Maritime Continent) is the most common phase during an extreme precipitation event, while phase 2 (convection over the Indian Ocean) discourages an extreme event from occurring. Interactions between El Niño–Southern Oscillation (ENSO) and the propagation speed of the MJO result in extreme events during phase 1 of the MJO and El Niño but phase 8 during neutral ESNO conditions.

Corresponding author: Allison Collow, allison.collow@nasa.gov

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Save