• Albergel, C., P. Rosnay, G. Balsamo, L. Isaksen, and J. Muñoz-Sabater, 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeor., 13, 14421460, https://doi.org/10.1175/JHM-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., www.fao.org/docrep/X0490E/X0490E00.htm.

  • Cosgrove, B. A., and et al. , 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, https://doi.org/10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and et al. , 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, RG2002, https://doi.org/10.1029/2011RG000372.

    • Search Google Scholar
    • Export Citation
  • Damberg, L., and A. AghaKouchak, 2014: Global trends and patterns of drought from space. Theor. Appl. Climatol., 117, 441448, https://doi.org/10.1007/s00704-013-1019-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and et al. , 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and et al. , 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeor., 17, 10491067, https://doi.org/10.1175/JHM-D-15-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2014a: In situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet. Geophys. Res. Lett., 41, 47274734, https://doi.org/10.1002/2014GL060949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2014b: Comparison and application of multiple methods for temporal interpolation of daily soil moisture. Int. J. Climatol., 34, 26042621, https://doi.org/10.1002/joc.3862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2019: Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring. Water Resour. Res., 55, 15651582, https://doi.org/10.1029/2018WR024039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015a: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., S. M. Quiring, O. W. Frauenfeld, and A. D. Rapp, 2015b: Synoptic conditions related to soil moisture-atmosphere interactions and unorganized convection in Oklahoma. J. Geophys. Res. Atmos., 120, 11 51911 535, https://doi.org/10.1002/2015JD023975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., Q. Wang, and S. M. Quiring, 2016: The observation record length necessary to generate robust soil moisture percentiles. J. Appl. Meteor. Climatol., 55, 21312149, https://doi.org/10.1175/JAMC-D-16-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., S. M. Quiring, and O. W. Frauenfeld, 2017: Multi-decadal variability of soil moisture–temperature coupling over the contiguous United States modulated by Pacific and Atlantic sea surface temperatures. Int. J. Climatol., 37, 14001415, https://doi.org/10.1002/joc.4785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., S. M. Quiring, B. Thakur, R. Jogineedi, A. Houston, S. Yuan, A. Kalra, and N. Lock, 2018: Evaluating soil moisture–precipitation interactions using remote sensing: A sensitivity analysis. J. Hydrometeor., 19, 12371253, https://doi.org/10.1175/JHM-D-17-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and P. A. Dirmeyer, 2013: Interannual variability of land–atmosphere coupling strength. J. Hydrometeor., 14, 16361646, https://doi.org/10.1175/JHM-D-12-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm1. J. Amer. Water Resour. Assoc., 35, 311322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halwatura, D., N. McIntyre, A. M. Lechner, and S. Arnold, 2017: Capability of meteorological drought indices for detecting soil moisture droughts. J. Hydrol. Reg. Stud., 12, 396412, https://doi.org/10.1016/j.ejrh.2017.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and et al. , 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159254.

  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and et al. , 2010: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, https://doi.org/10.1038/ngeo1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., N. A. Lock, J. Lahowetz, B. L. Barjenbruch, G. Limpert, and C. Oppermann, 2015: Thunderstorm Observation by Radar (ThOR): An algorithm to develop a climatology of thunderstorms. J. Atmos. Oceanic Technol., 32, 961981, https://doi.org/10.1175/JTECH-D-14-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., M. Smith, Z. Cui, B. Cosgrove, K. Warner, and R. Zamora, 2010: Modification of Sacramento Soil Moisture Accounting Heat Transfer Component (SAC-HT) for enhanced evapotranspiration. NOAA Tech. Rep. NWS 53, 66 pp., https://repository.library.noaa.gov/view/noaa/6563.

  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, E. S., T. E. Ochsner, and S. M. Quiring, 2019: Development and evaluation of soil moisture-based indices for agricultural drought monitoring. Agron. J., 111, 13921406, https://doi.org/10.2134/agronj2018.09.0558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, R., and et al. , 2016: Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrol. Earth Syst. Sci., 20, 11171131, https://doi.org/10.5194/hess-20-1117-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Fernández, J., A. González-Zamora, N. Sánchez, A. Gumuzzio, and C. M. Herrero-Jiménez, 2016: Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived soil water deficit index. Remote Sens. Environ., 177, 277286, https://doi.org/10.1016/j.rse.2016.02.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179186.

  • McPherson, R. A., and et al. , 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, L., and S. M. Quiring, 2010: Examining the influence of spring soil moisture anomalies on summer precipitation in the U.S. Great Plains using the community atmosphere model version 3. J. Geophys. Res., 115, D21118, https://doi.org/10.1029/2010jd014449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., and R. Srinivasan, 2005: Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteor., 133, 6988, https://doi.org/10.1016/j.agrformet.2005.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp., http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.

  • Palmer, W. C., 1968: Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise, 21, 156161, https://doi.org/10.1080/00431672.1968.9932814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., 2009: Developing objective operational definitions for monitoring drought. J. Appl. Meteor. Climatol., 48, 12171229, https://doi.org/10.1175/2009JAMC2088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., T. W. Ford, J. K. Wang, A. Khong, E. Harris, T. Lindgren, D. W. Goldberg, and Z. Li, 2016: The North American soil moisture database: Development and applications. Bull. Amer. Meteor. Soc., 97, 14411459, https://doi.org/10.1175/BAMS-D-13-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, C. A. Schlosser, N. A. Speranskaya, and Y. Xue, 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8, 1535, https://doi.org/10.1175/1520-0442(1995)008<0015:UOMSMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and et al. , 2003: Evaluation of the North American land data assimilation system over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, https://doi.org/10.1029/2002jd003245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., R. Kumar, and M. Zink, 2013: Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor., 14, 4768, https://doi.org/10.1175/JHM-D-12-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., and et al. , 2018: Anthropogenic warming exacerbates European soil moisture droughts. Nat. Climate Change, 8, 421426, https://doi.org/10.1038/s41558-018-0138-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA natural resources conservation service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, G. D. Skwira, A. L. Doggett, and J. W. Lipe, 2005: The west Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, https://doi.org/10.1175/JTECH-1690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, F. Wen, and E. F. Wood, 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, https://doi.org/10.1029/2004JD005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, A. P., D. d. S. Niyogi, and S. Raman, 2002: Adopting drought indices for estimating soil moisture: A North Carolina case study. Geophys. Res. Lett., 29, 1183, https://doi.org/10.1029/2001GL013343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, J. L., D. D. Briske, D. P. Brown, and C. M. Rottler, 2018: Vulnerability of Southern Plains agriculture to climate change. Climatic Change, 146, 201218, https://doi.org/10.1007/s10584-017-1965-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and et al. , 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, https://doi.org/10.1038/ngeo950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Soil Sci., 66, 77, https://doi.org/10.1097/00010694-194807000-00007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., S. Yuan, and S. M. Quiring, 2018: Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. For. Meteor., 249, 107119, https://doi.org/10.1016/j.agrformet.2017.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, https://doi.org/10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., T. J. Bohn, S. P. Mahanama, R. D. Koster, and D. P. Lettenmaier, 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, https://doi.org/10.1175/2008JCLI2586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. C. Rogers, and D. K. Munroe, 2015: Commonly used drought indices as indicators of soil moisture in China. J. Hydrometeor., 16, 13971408, https://doi.org/10.1175/JHM-D-14-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, 2007: Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol., 27, 6579, https://doi.org/10.1002/joc.1371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17, 27522764, https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., T. W. Ford, Y. Wu, S. M. Quiring, and M. B. Ek, 2015a: Automated quality control of in situ soil moisture from the North American soil moisture database using NLDAS-2 products. J. Appl. Meteor. Climatol., 54, 12671282, https://doi.org/10.1175/JAMC-D-14-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, Y. Wu, T. Ford, and S. M. Quiring, 2015b: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 19621980, https://doi.org/10.1175/JHM-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, S., and S. M. Quiring, 2014: Drought in the U.S. Great Plains (1980–2012): A sensitivity study using different methods for estimating potential evapotranspiration in the Palmer drought severity index. J. Geophys. Res. Atmos., 119, 10 99611 010, https://doi.org/10.1002/2014JD021970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, S., S. M. Quiring, and S. Patil, 2016: Spatial and temporal variations in the accuracy of meteorological drought indices. Cuad. Invest. Geogr., 42, 167, https://doi.org/10.18172/CIG.2916.

    • Search Google Scholar
    • Export Citation
  • Yuan, S., Y. Wang, S. M. Quiring, T. W. Ford, and A. L. Houston, 2020: A sensitivity study on the response of convection initiation to in situ soil moisture in the central United States. Climate Dyn., 54, 20132028, https://doi.org/10.1007/s00382-019-05098-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 221 39
Full Text Views 56 56 12
PDF Downloads 66 66 13

Evaluating the Utility of Drought Indices as Soil Moisture Proxies for Drought Monitoring and Land–Atmosphere Interactions

View More View Less
  • 1 Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio
© Get Permissions
Restricted access

Abstract

There are a variety of metrics that are used to monitor drought conditions, including soil moisture and drought indices. This study examines the relationship between in situ soil moisture, NLDAS-2 soil moisture, and four drought indices: the standardized precipitation index, the standardized precipitation evapotranspiration index, the crop moisture index, and the Palmer Z index. We evaluate how well drought indices and the modeled soil moisture represent the intensity, variability, and persistence of the observed soil moisture in the southern Great Plains. We also apply the drought indices to evaluate land–atmosphere interactions and compare the results with soil moisture. The results show that the SPI, SPEI, and Z index have higher correlations with 0–10-cm soil moisture, while the CMI is more strongly correlated with 0–100-cm soil moisture. All the drought indices tend to overestimate the area affected by moderate to extreme drought conditions. Significant drying trends from 2003 to 2017 are evident in SPEI, Z index, and CMI, and they agree with those in the observed soil moisture. The CMI captures the intra- and interannual variability of 0–100-cm soil moisture better than the other drought indices. The persistence of CMI is longer than that of 0–10-cm soil moisture and shorter than that of 0–100-cm soil moisture. Model-derived soil moisture does not outperform the CMI in the 0–100-cm soil layer. The Z index and CMI are better drought indices to use as a proxy for soil moisture when examining land–atmosphere interactions while the SPI is not recommended. Soil type and climate affect the relationship between drought indices and observed soil moisture.

Corresponding author: Shanshui Yuan, yuan.750@osu.edu

Abstract

There are a variety of metrics that are used to monitor drought conditions, including soil moisture and drought indices. This study examines the relationship between in situ soil moisture, NLDAS-2 soil moisture, and four drought indices: the standardized precipitation index, the standardized precipitation evapotranspiration index, the crop moisture index, and the Palmer Z index. We evaluate how well drought indices and the modeled soil moisture represent the intensity, variability, and persistence of the observed soil moisture in the southern Great Plains. We also apply the drought indices to evaluate land–atmosphere interactions and compare the results with soil moisture. The results show that the SPI, SPEI, and Z index have higher correlations with 0–10-cm soil moisture, while the CMI is more strongly correlated with 0–100-cm soil moisture. All the drought indices tend to overestimate the area affected by moderate to extreme drought conditions. Significant drying trends from 2003 to 2017 are evident in SPEI, Z index, and CMI, and they agree with those in the observed soil moisture. The CMI captures the intra- and interannual variability of 0–100-cm soil moisture better than the other drought indices. The persistence of CMI is longer than that of 0–10-cm soil moisture and shorter than that of 0–100-cm soil moisture. Model-derived soil moisture does not outperform the CMI in the 0–100-cm soil layer. The Z index and CMI are better drought indices to use as a proxy for soil moisture when examining land–atmosphere interactions while the SPI is not recommended. Soil type and climate affect the relationship between drought indices and observed soil moisture.

Corresponding author: Shanshui Yuan, yuan.750@osu.edu
Save