• Avanzi, F., Z. Zheng, A. Coogan, R. Rice, R. Akella, and M. H. Conklin, 2020: Gap-filling snow-depth time-series with Kalman filtering-smoothing and expectation maximization: Proof of concept using spatially dense wireless-sensor-network data. Cold Reg. Sci. Technol., 175, 103066, https://doi.org/10.1016/j.coldregions.2020.103066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., and et al. , 2018: Spatially distributed water-balance and meteorological data from the rain–snow transition, southern Sierra Nevada, California. Earth Syst. Sci. Data, 10, 17951805, https://doi.org/10.5194/essd-10-1795-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., G. Cui, R. Rice, X. Meng, Z. Zhang, P. Hartsough, S. Glaser, and M. Conklin, 2020: Snow depth, air temperature, humidity, soil moisture and temperature, and solar radiation data from the basin-scale wireless-sensor network in American River Hydrologic Observatory (ARHO). UC Merced, accessed 17 August 2020, https://doi.org/10.6071/M39Q2V.

    • Crossref
    • Export Citation
  • Behrangi, A., X. Yin, S. Rajagopal, D. Stampoulis, and H. Ye, 2018: On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Quart. J. Roy. Meteor. Soc., 144, 89102, https://doi.org/10.1002/qj.3240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, F., F. M. Ralph, A. M. Wilson, and D. P. Lettenmaier, 2017: GPM satellite radar measurements of precipitation and freezing level in Atmospheric Rivers: Comparison with ground-based radars and reanalyses. J. Geophys. Res. Atmos., 122, 747764, https://doi.org/10.1002/2017JD027355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., F. Dominguez, H. Hu, G. von Glinski, M. Robles, J. Skindlov, and J. Walter, 2017: Observed hydrologic impacts of landfalling atmospheric rivers in the Salt and Verde river basins of Arizona, United States. Water Resour. Res., 53, 10 02510 042, https://doi.org/10.1002/2017WR020778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, B., K. Yang, J. Qin, L. Wang, Y. Chen, and X. He, 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154163, https://doi.org/10.1016/j.jhydrol.2014.03.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldardiry, H., A. Mahmood, X. Chen, F. Hossain, B. Nijssen, and D. P. Lettenmaier, 2019: Atmospheric river-induced precipitation and snowpack during the western United States cold season. J. Hydrometeor., 20, 613630, https://doi.org/10.1175/JHM-D-18-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feld, S. I., N. C. Cristea, and J. D. Lundquist, 2013: Representing atmospheric moisture content along mountain slopes: Examination using distributed sensors in the Sierra Nevada, California. Water Resour. Res., 49, 44244441, https://doi.org/10.1002/wrcr.20318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, G. J., 2011: Climate change and the changing water balance for California’s North Fork River. Proc. 79th Annual Western Snow Conf., Stateline, NV, Western Snow Conference, 7182, https://westernsnowconference.org/node/773.

  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenson, N., L. R. R. Leung, C. M. M. Bitz, and E. Blanchard-Wrigglesworth, 2018: Influence of atmospheric rivers on mountain snowpack in the western United States. J. Climate, 31, 99219940, https://doi.org/10.1175/JCLI-D-18-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., and et al. , 2017: Rain or snow: Hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci., 21, 122, https://doi.org/10.5194/hess-21-1-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatchett, B., B. Daudert, C. Garner, N. Oakley, A. Putnam, and A. White, 2017: Winter snow level rise in the northern Sierra Nevada from 2008 to 2017. Water, 9, 899, https://doi.org/10.3390/w9110899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., R. Weihs, A. C. Martin, F. M. Ralph, and T. Osborne, 2020: Skill of rain-snow level forecasts for landfalling atmospheric rivers: A multi-model model assessment using California’s network of vertically profiling radars. J. Hydrometeor., 21, 751771, https://doi.org/10.1175/JHM-D-18-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., B. Guan, D. E. Waliser, and D. P. Lettenmaier, 2019: Sensitivity of seasonal snowfall attribution to Atmospheric Rivers and their reanalysis-based detection. Geophys. Res. Lett., 46, 794803, https://doi.org/10.1029/2018GL080783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, K. S., and N. P. Molotch, 2019: The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient. Hydrol. Earth Syst. Sci., 23, 37653786, https://doi.org/10.5194/HESS-23-3765-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, K. S., T. S. Winchell, B. Livneh, and N. P. Molotch, 2018: Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere. Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, P. E., D. A. Carter, J. R. Jordan, and A. B. White, 2009: A new snow-level detection radar. 34th Conf. Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P14.13, https://ams.confex.com/ams/34Radar/techprogram/paper_155638.htm

  • Johnston, P. E., J. R. Jordan, A. B. White, D. A. Carter, D. M. Costa, and T. E. Ayers, 2017: The NOAA FM-CW snow-level radar. J. Atmos. Oceanic Technol., 34, 249267, https://doi.org/10.1175/JTECH-D-16-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koczot, K. M., A. E. Jeton, B. J. McGurk, and M. D. Dettinger, 2004: Precipitation-runoff processes in the Feather River Basin, northeastern California, with prospects for streamflow predictability, water years 1971–97. U.S. Geological Survey Scientific Investigations Rep. 2004-5202, 82 pp., https://pubs.usgs.gov/sir/2004/5202/sir2004-5202.pdf.

  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225234, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malek, S. A., F. Avanzi, K. Brun-Laguna, T. Maurer, C. A. Oroza, P. C. Hartsough, T. Watteyne, and S. D. Glaser, 2017: Real-time alpine measurement system using wireless sensor networks. Sensors, 17, 2583, https://doi.org/10.3390/s17112583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malek, S. A., S. D. Glaser, and R. C. Bales, 2019: Wireless sensor networks for improved snow water equivalent and runoff estimates. IEEE Access, 7, 18 42018 436, https://doi.org/10.1109/ACCESS.2019.2895397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., A. Winstral, M. Reba, J. Pomeroy, and M. Kumar, 2013: An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour., 55, 98110, https://doi.org/10.1016/j.advwatres.2012.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40, 12181227, https://doi.org/10.1175/1520-0469(1983)040<1218:TKOOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173, https://doi.org/10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, A. White, and T. Coleman, 2017: Snow-level estimates using operational polarimetric weather radar measurements. J. Hydrometeor., 18, 10091019, https://doi.org/10.1175/JHM-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze, and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, https://doi.org/10.1175/JAS3554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., and D. E. Kingsmill, 2013: Mesoscale variations of the atmospheric snow line over the northern Sierra Nevada: Multiyear statistics, case study, and mechanisms. J. Atmos. Sci., 70, 916938, https://doi.org/10.1175/JAS-D-12-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, and G. H. Roe, 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, https://doi.org/10.1175/JAS-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizukami, N., V. Koren, M. Smith, D. Kingsmill, Z. Zhang, B. Cosgrove, and Z. Cui, 2013: The impact of precipitation type discrimination on hydrologic simulation: Rain–snow partitioning derived from HMT-West radar-detected brightband height versus surface temperature data. J. Hydrometeor., 14, 11391158, https://doi.org/10.1175/JHM-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen, 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Climate Change, 8, 808812, https://doi.org/10.1038/s41558-018-0236-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. Hughes, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohara, N., M. L. Kavvas, S. Kure, Z. Chen, S. Jang, and E. Tan, 2011: Physically based estimation of maximum precipitation over American River Watershed, California. J. Hydrol. Eng., 16, 351361, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, A., 2003: Snow or rain ? - A matter of wet-bulb temperature. Examensarbete vid institutionen för geovetenskaper, 32 pp., https://www.diva-portal.org/smash/get/diva2:968860/FULLTEXT01.pdf.

  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. C. L. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837839, https://doi.org/10.1175/BAMS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risley, J., H. Moradkhani, L. Hay, and S. Markstrom, 2011: Statistical comparisons of watershed-scale response to climate change in selected basins across the United States. Earth Interact., 15, https://doi.org/10.1175/2010EI364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and G. Liu, 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, https://doi.org/10.1175/JHM-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumargo, E., F. Cannon, F. M. Ralph, and B. Henn, 2020: Freezing level forecast error can consume reservoir flood control storage: Potentials for Lake Oroville and New Bullards Bar reservoirs in California. Water Resour. Res., 56, e2020WR027072, https://doi.org/10.1029/2020WR027072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamang, S. K., A. M. Ebtehaj, A. F. Prein, and A. J. Heymsfield, 2020: Linking global changes of snowfall and wet-bulb temperature. J. Climate, 33, 3959, https://doi.org/10.1175/JCLI-D-19-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Cleave, D., R. Graham, D. Myrick, and M. Nordquist, 2019: Snow level in the NWS western region: Definition and calculation methodology. NWS Doc., 5 pp., https://www.weather.gov/media/wrh/online_publications/TAs/TA1901.pdf.

  • Wang, Y., P. Broxton, Y. Fang, A. Behrangi, M. Barlage, X. Zeng, and G. Niu, 2019: A wet-bulb temperature-based rain-snow partitioning scheme improves snowpack prediction over the drier western United States. Geophys. Res. Lett., 46, 13 82513 835, https://doi.org/10.1029/2019GL085722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, S. C., B. Kerkez, R. C. Bales, S. D. Glaser, K. Rittger, and R. R. Rice, 2013: Sensor placement strategies for snow water equivalent (SWE) estimation in the American River basin. Water Resour. Res., 49, 891903, https://doi.org/10.1002/wrcr.20100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697, https://doi.org/10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, A. F. Henkel, P. J. Neiman, F. M. Ralph, and S. I. Gutman, 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753, https://doi.org/10.1175/2009JHM1181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., and et al. , 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, https://doi.org/10.1175/JTECH-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., B. J. Moore, D. J. Gottas, and P. J. Neiman, 2019: Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017. Bull. Amer. Meteor. Soc., 100, 5570, https://doi.org/10.1175/BAMS-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yigzaw, W., F. Hossain, and A. Kalyanapu, 2013: Impact of artificial reservoir size and land use/land cover patterns on probable maximum precipitation and flood: Case of Folsom Dam on the American River. J. Hydrol. Eng., 18, 11801190, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. A. McMurdie, and R. A. Houze, 2018: Stratiform precipitation processes in cyclones passing over a coastal mountain range. J. Atmos. Sci., 75, 9831004, https://doi.org/10.1175/JAS-D-17-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., S. Glaser, R. Bales, M. Conklin, R. Rice, and D. Marks, 2017a: Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network. Water Resour. Res., 53, 66266641, https://doi.org/10.1002/2016WR018825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., S. D. Glaser, R. C. Bales, M. Conklin, R. Rice, and D. G. Marks, 2017b: Technical report: The design and evaluation of a basin-scale wireless sensor network for mountain hydrology. Water Resour. Res., 53, 44874498, https://doi.org/10.1002/2016WR019619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, K., F. Zheng, X. Xu, and C. Qin, 2018: Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China. Atmos. Res., 205, 4859, https://doi.org/10.1016/j.atmosres.2018.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

All Time Past Year Past 30 Days
Abstract Views 264 264 18
Full Text Views 17 17 4
PDF Downloads 21 21 6

Detecting Rain–Snow-Transition Elevations in Mountain Basins Using Wireless Sensor Networks

View More View Less
  • 1 Sierra Nevada Research Institute and School of Engineering, University of California, Merced, Merced, California
  • | 2 Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California
  • | 3 California Department of Water Resources, Sacramento, California
  • | 4 CIMA Research Foundation, Savona, Italy
  • | 5 Department of Land, Air, and Water Resources, University of California, Davis, Davis, California
© Get Permissions
Restricted access

Abstract

To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature Twet and the other based on snow-depth measurements of accumulation and ablation. With data from 17 spatially distributed clusters (178 nodes) from two networks, in the American and Feather River basins of California’s Sierra Nevada, we analyzed transition elevation during 76 storm events in 2014–18. A Twet threshold of 0.5°C best matched the transition elevation defined by snow depth. Transition elevations using Twet in upper elevations of the basins generally agreed with atmospheric snow level from radars located at lower elevations, while radar snow level was ~100 m higher due to snow-level lowering on windward mountainsides during orographic lifting. Diurnal patterns of the difference between transition elevation and radar snow level were observed in the American basin, related to diurnal ground-temperature variations. However, these patterns were not found in the Feather basin due to complex terrain and higher uncertainties in transition-elevation estimates. The American basin tends to exhibit 100-m-higher transition elevations than does the Feather basin, consistent with the Feather basin being about 1° latitude farther north. Transition elevation averaged 155 m higher in intense atmospheric river events than in other events; meanwhile, snow-level lowering was enhanced with a 90-m-larger difference between radar snow level and transition elevation. On-the-ground continuous observations from distributed sensor networks can complement radar data and provide important ground truth and spatially resolved information on transition elevations in mountain basins.

Corresponding author: Guotao Cui, gcui3@ucmerced.edu

Abstract

To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature Twet and the other based on snow-depth measurements of accumulation and ablation. With data from 17 spatially distributed clusters (178 nodes) from two networks, in the American and Feather River basins of California’s Sierra Nevada, we analyzed transition elevation during 76 storm events in 2014–18. A Twet threshold of 0.5°C best matched the transition elevation defined by snow depth. Transition elevations using Twet in upper elevations of the basins generally agreed with atmospheric snow level from radars located at lower elevations, while radar snow level was ~100 m higher due to snow-level lowering on windward mountainsides during orographic lifting. Diurnal patterns of the difference between transition elevation and radar snow level were observed in the American basin, related to diurnal ground-temperature variations. However, these patterns were not found in the Feather basin due to complex terrain and higher uncertainties in transition-elevation estimates. The American basin tends to exhibit 100-m-higher transition elevations than does the Feather basin, consistent with the Feather basin being about 1° latitude farther north. Transition elevation averaged 155 m higher in intense atmospheric river events than in other events; meanwhile, snow-level lowering was enhanced with a 90-m-larger difference between radar snow level and transition elevation. On-the-ground continuous observations from distributed sensor networks can complement radar data and provide important ground truth and spatially resolved information on transition elevations in mountain basins.

Corresponding author: Guotao Cui, gcui3@ucmerced.edu
Save