• Anderson, W. B., R. Seager, W. Baethgen, M. Cane, and L. You, 2019: Synchronous crop failures and climate-forced production variability. Sci. Adv., 5, eaaw1976, https://doi.org/10.1126/SCIADV.AAW1976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belloni, A., and V. Chernozhukov, 2013: Least squares after model selection in high-dimensional sparse models. Bernoulli, 19, 521547, https://doi.org/10.3150/11-BEJ410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, J. S., and et al. , 2013: The U.S. drought of 2012 in perspective: A call to action. Global Food Secur., 2, 139143, https://doi.org/10.1016/j.gfs.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, and J. O. Adegoke, 2007a: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865, https://doi.org/10.1175/JCLI4211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, J. O. Adegoke, S. D. Schubert, and P. J. Pegion, 2007b: Investigation of the summer climate of the contiguous United States and Mexico using the regional atmospheric modeling system (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887, https://doi.org/10.1175/JCLI4212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, F. C., and J. M. Wallace, 1987: Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon. Wea. Rev., 115, 12531269, https://doi.org/10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11, 24912504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciancarelli, B., C. L. Castro, C. Woodhouse, F. Dominguez, H. I. Chang, C. Carrillo, and D. Griffin, 2014: Dominant patterns of US warm season precipitation variability in a fine resolution observational record, with focus on the southwest. Int. J. Climatol., 34, 687707, https://doi.org/10.1002/joc.3716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., E. R. Cook, K. J. Anchukaitis, R. Seager, and R. L. Miller, 2011: Forced and unforced variability of twentieth century North American droughts and pluvials. Climate Dyn., 37, 10971110, https://doi.org/10.1007/s00382-010-0897-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/SCIADV.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1994: Vegetation stress as a feedback mechanism in midlatitude drought. J. Climate, 7, 14631483, https://doi.org/10.1175/1520-0442(1994)007<1463:VSAAFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X. Z. Liang, and M. F. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., and R. Fu, 2019: The role of spring dry zonal advection in summer drought onset over the US Great Plains. Atmos. Chem. Phys., 19, 15 19915 216, https://doi.org/10.5194/acp-19-15199-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, and R. J. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dyn., 37, 569586, https://doi.org/10.1007/s00382-010-0835-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., M. Trnka, M. Hayes, and Y. J. Zhang, 2017: Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains? J. Climate, 30, 265278, https://doi.org/10.1175/JCLI-D-15-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, I. M., J. A. Dracup, P. B. Duffy, P. Pegion, and S. Schubert, 2010: Influence of SST forcing on stochastic characteristics of simulated precipitation and drought. J. Hydrometeor., 11, 754769, https://doi.org/10.1175/2009JHM1132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, D. N., and et al. , 2016: What caused the spring intensification and winter demise of the 2011 drought over Texas? Climate Dyn., 47, 30773090, https://doi.org/10.1007/s00382-016-3014-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. K. Eischeid, X. W. Quan, H. F. Diaz, R. S. Webb, R. M. Dole, and D. R. Easterling, 2012: Is a transition to semipermanent drought conditions imminent in the U.S. Great Plains? J. Climate, 25, 83808386, https://doi.org/10.1175/JCLI-D-12-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and et al. , 2013: An interpretation of the origins of the 2012 central Great Plains drought. NOAA Assessment Rep., 44 pp., https://psl.noaa.gov/csi/factsheets/pdf/noaa-gp-drought-assessment-report.pdf.

  • Hoerling, M. P., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and E. Kalnay, 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma-Texas drought. Nature, 408, 842844, https://doi.org/10.1038/35048548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2008: Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation. J. Climate, 21, 23712383, https://doi.org/10.1175/2007JCLI2005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., and B. H. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor-analysis. Psychometrika, 23, 187200, https://doi.org/10.1007/BF02289233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 1983: Some spatial characteristics of drought duration in the United-States. J. Climate Appl. Meteor., 22, 13561366, https://doi.org/10.1175/1520-0450(1983)022<1356:SSCODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. H. Chang, H. L. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer, 2014: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344, 516519, https://doi.org/10.1126/science.1251423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and R. M. Dole, 1995: A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave-droughts. J. Climate, 8, 16581675, https://doi.org/10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and et al. , 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata river basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. K. E. Schemm, and S. H. Yoo, 2009: Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Climate, 22, 59625982, https://doi.org/10.1175/2009JCLI2966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614473, https://doi.org/10.1175/2010JCLI2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4, 5465, https://doi.org/10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., 1991: Springtime soil-moisture, natural climatic variability, and North American drought as simulated by the NCAR Community Climate Model 1. J. Climate, 4, 890897, https://doi.org/10.1175/1520-0442(1991)004<0890:SSMNCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and D. J. Erickson, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2, 13621380, https://doi.org/10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., R. Fu, R. E. Dickinson, and D. N. Fernando, 2016: Why do summer droughts in the Southern Great Plains occur in some La Nina years but not others? J. Geophys. Res. Atmos., 121, 11201137, https://doi.org/10.1002/2015JD023508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X. W., M. P. Hoerling, B. Lyon, A. Kumar, M. A. Bell, M. K. Tippett, and H. Wang, 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, https://doi.org/10.1175/JAMC-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Rind, D., 1982: The influence of ground moisture conditions in North America on summer climate as modeled in the GISS GCM. Mon. Wea. Rev., 110, 14871494, https://doi.org/10.1175/1520-0493(1982)110<1487:TIOGMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the US Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and et al. , 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Burgman, Y. Kushnir, A. Clement, E. Cook, N. Naik, and J. Miller, 2008: Tropical pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs. J. Climate, 21, 61756190, https://doi.org/10.1175/2008JCLI2170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, https://doi.org/10.1175/JHM-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, M., and et al. , 2014: Great Plains. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 441–461.

  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H. Y., G. Branstator, H. L. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M. F., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M. F., R. Seager, C. H. Li, H. B. Liu, and N. Henderson, 2018: Mechanism of future spring drying in the southwestern United States in CMIP5 models. J. Climate, 31, 42654279, https://doi.org/10.1175/JCLI-D-17-0574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242, 16401645, https://doi.org/10.1126/science.242.4886.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and A. Kumar, 2015: Assessing the impact of ENSO on drought in the U.S. Southwest with NCEP climate model simulations. J. Hydrol., 526, 3041, https://doi.org/10.1016/j.jhydrol.2014.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. L., S. Schubert, M. Suarez, and R. Koster, 2010: The physical mechanism by which the leading patterns of SST variability impact U.S. precipitation. J. Climate, 23, 18151836, https://doi.org/10.1175/2009JCLI3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. L., S. Schubert, R. Koster, Y. G. Ham, and M. Suarez, 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. Heat and drought: A study in contrasts. J. Hydrometeor., 15, 12551273, https://doi.org/10.1175/JHM-D-13-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. X. Black, 2018: An intraseasonal mode of atmospheric variability relevant to the US hydroclimate in boreal summer: Dynamic origin and East Asia connection. J. Climate, 31, 98559868, https://doi.org/10.1175/JCLI-D-18-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. X. Black, 2017: Observed and simulated spring and summer dryness in the United States: The impact of the Pacific Sea surface temperature and beyond. J. Geophys. Res. Atmos., 122, 12 71312 731, https://doi.org/10.1002/2017JD027279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, Y. Z., R. Fu, and H. Q. Wang, 2020: Large-scale Atmospheric circulation patterns associated with US Great Plains warm season droughts revealed by self-organizing maps. J. Geophys. Res. Atmos., 125, e2019JD031460, https://doi.org/10.1029/2019JD031460.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 201 17
Full Text Views 49 49 4
PDF Downloads 67 67 6

Dryness over the U.S. Southwest, a Springboard for Cold Season Pacific SST to Influence Warm Season Drought over the U.S. Great Plains

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Although the influence of sea surface temperature (SST) forcing and large-scale teleconnection on summer droughts over the U.S. Great Plains has been suggested for decades, the underlying mechanisms are still not fully understood. Here we show a significant correlation between low-level moisture condition over the U.S. Southwest in spring and rainfall variability over the Great Plains in summer. Such a connection is due to the strong influence of the Southwest dryness on the zonal moisture advection to the Great Plains from spring to summer. This advection is an important contributor for the moisture deficit during spring to early summer, and so can initiate warm season drought over the Great Plains. In other words, the well-documented influence of cold season Pacific SST on the Southwest rainfall in spring, and the influence of the latter on the zonal moisture advection to the Great Plains from spring to summer, allows the Pacific climate variability in winter and spring to explain over 35% of the variance of the summer precipitation over the Great Plains, more than that can be explained by the previous documented west Pacific–North America (WPNA) teleconnection forced by tropical Pacific SST in early summer. Thus, this remote land surface feedback due to the Southwest dryness can potentially improve the predictability of summer precipitation and drought onsets over the Great Plains.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0029.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yizhou Zhuang, zhuangyz@atmos.ucla.edu

Abstract

Although the influence of sea surface temperature (SST) forcing and large-scale teleconnection on summer droughts over the U.S. Great Plains has been suggested for decades, the underlying mechanisms are still not fully understood. Here we show a significant correlation between low-level moisture condition over the U.S. Southwest in spring and rainfall variability over the Great Plains in summer. Such a connection is due to the strong influence of the Southwest dryness on the zonal moisture advection to the Great Plains from spring to summer. This advection is an important contributor for the moisture deficit during spring to early summer, and so can initiate warm season drought over the Great Plains. In other words, the well-documented influence of cold season Pacific SST on the Southwest rainfall in spring, and the influence of the latter on the zonal moisture advection to the Great Plains from spring to summer, allows the Pacific climate variability in winter and spring to explain over 35% of the variance of the summer precipitation over the Great Plains, more than that can be explained by the previous documented west Pacific–North America (WPNA) teleconnection forced by tropical Pacific SST in early summer. Thus, this remote land surface feedback due to the Southwest dryness can potentially improve the predictability of summer precipitation and drought onsets over the Great Plains.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0029.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yizhou Zhuang, zhuangyz@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.37 MB)
Save