• Anabalón, A., and A. Sharma, 2017: On the divergence of potential and actual evapotranspiration trends: An assessment across alternate global datasets. Earth’s Future, 5, 905917, https://doi.org/10.1002/2016EF000499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. Hurk, M. Hirschi, and A. K. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, https://doi.org/10.1175/2008JHM1068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, and M. H. Savoie, 2012: EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geoinf., 1, 3245, https://doi.org/10.3390/ijgi1010032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and Coauthors, 2014: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ., 140, 279293, https://doi.org/10.1016/j.rse.2013.08.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, E., A. Henderson-Sellers, and J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 88 pp., https://doi.org/10.5065/D67W6959.

    • Crossref
    • Export Citation
  • Donaldson, R., R. M. Dyer, and M. J. Kraus, 1975: An objective evaluator of techniques for predicting severe weather events. Preprints, Ninth Conf on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 321–326.

  • Ershadi, A., M. McCabe, J. P. Evans, N. W. Chaney, and E. F. Wood, 2014: Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteor., 187, 4661, https://doi.org/10.1016/j.agrformet.2013.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, https://doi.org/10.1016/j.rse.2007.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helsel, D. R., and R. M. Hirsch, 1992: Statistical Methods in Water Resources. Studies in Environmental Science, Vol. 49, Elsevier, 546 pp.

  • Hettiarachchi, S., C. Wasko, and A. Sharma, 2019: Can antecedent moisture conditions modulate the increase in flood risk due to climate change in urban catchments? J. Hydrol., 571, 1120, https://doi.org/10.1016/j.jhydrol.2019.01.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., J. R. Slack, and R. A. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107121, https://doi.org/10.1029/WR018i001p00107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and I. B. Mason, 2011: Deterministic forecasts of binary events. Forecast Verification, 2nd ed. I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 31–59.

    • Crossref
    • Export Citation
  • Huizhi, L., and F. Jianwu, 2012: Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J. Appl. Meteor. Climatol., 51, 18751888, https://doi.org/10.1175/JAMC-D-11-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2013: The Physical Science Basis, Cambridge University Press, 1535 pp.

  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, https://doi.org/10.1029/2010JD014545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, F., and A. Sharma, 2010: A comparison of Australian open water body evaporation trends for current and future climates estimated from class A evaporation pans and general circulation models. J. Hydrometeor., 11, 105121, https://doi.org/10.1175/2009JHM1158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1948: Rank Correlation Methods. Charles Griffin, 160 pp.

  • Kim, S., and A. Sharma, 2019: The role of floodplain topography in deriving basin discharge using passive microwave remote sensing. Water Resour. Res., 55, 17071716, https://doi.org/10.1029/2018WR023627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiptala, J. K., Y. Mohamed, M. L. Mul, and P. Van der Zaag, 2013: Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resour. Res., 49, 84958510, https://doi.org/10.1002/2013WR014240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, https://doi.org/10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.

  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, and E. F. Wood, 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, https://doi.org/10.1029/96JD01448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libertino, A., A. Sharma, V. Lakshmi, and P. Claps, 2016: A global assessment of the timing of extreme rainfall from TRMM and GPM for improving hydrologic design. Environ. Res. Lett., 11, 054003, https://doi.org/10.1088/1748-9326/11/5/054003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Marshall, M., C. Funk, and J. Michaelsen, 2012: Examining evapotranspiration trends in Africa. Climate Dyn., 38, 18491865, https://doi.org/10.1007/s00382-012-1299-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMahon, T. A., M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar, 2013: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci., 17, 13311363, https://doi.org/10.5194/hess-17-1331-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2013: El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Climate Change, 4, 122126, https://doi.org/10.1038/nclimate2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2016: The WACMOS-ET project – Part II: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci., 20, 823842, https://doi.org/10.5194/hess-20-823-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, https://doi.org/10.1016/j.rse.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. \Geophys. Res. Lett., 38, L06402, https://doi.org/10.1029/2010GL046230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, https://doi.org/10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., J.-J. Wang, and NCAR Staff, Eds., 2020: The Climate Data Guide: GPCP (Monthly): Global Precipitation Climatology Project v2.3. UCAR, accessed 5 June 2020, https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project.

  • Philip, J. R., 1957: Evaporation, and moisture and heat fields in the soil. J. Meteor., 14, 354366, https://doi.org/10.1175/1520-0469(1957)014<0354:EAMAHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., H. K. Beaudoing, and NASA/GSFC/HSL, 2007a: GLDAS VIC Land Surface Model L4 Monthly 1.0 × 1.0 degree V001. GES DISC, accessed 7 June 2020, https://data.nasa.gov/Earth-Science/GLDAS-VIC-Land-Surface-Model-L4-Monthly-1-0-x-1-0-/tg9t-zgur.

  • Rodell, M., H. K. Beaudoing, and NASA/GSFC/HSL, 2007b: GLDAS Noah Land Surface Model L4 Monthly 1.0 × 1.0 degree V001. GES DISC, accessed 7 June 2020, https://data.nasa.gov/Earth-Science/GLDAS-Noah-Land-Surface-Model-L4-Monthly-1-0-x-1-0/fxur-u3e7/data?pane=feed.

  • Rodell, M., H. K. Beaudoing, and NASA/GSFC/HSL, 2007c: GLDAS CLM Land Surface Model L4 Monthly 1.0 × 1.0 degree V001. GES DISC, accessed 7 June 2020, https://data.nasa.gov/Earth-Science/GLDAS-CLM-Land-Surface-Model-L4-Monthly-1-0-x-1-0-/8xxw-6ya2.

  • Rodell, M., H. K. Beaudoing, and NASA/GSFC/HSL, 2007d: GLDAS Mosaic Land Surface Model L4 Monthly 1.0 × 1.0 degree V001. GES DISC, accessed 7 June 2020, https://data.nasa.gov/Earth-Science/GLDAS-Mosaic-Land-Surface-Model-L4-Monthly-1-0-x-1/392n-bnvz.

  • Rui, H., and H. Beaudoing, 2019: README document for NASA GLDAS version 2 data products. GES DISC Doc., 32 pp., https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/README_GLDAS2.pdf.

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, C. M., T. R. McVicar, F. M. Johnson, and L. A. Marshall, 2018: Revisiting pan evaporation trends in Australia a decade on. Geophys. Res. Lett., 45, 11 164111 172, https://doi.org/10.1029/2018GL079332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1992: A rank-invariant method of linear and polynomial regression analysis. Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology, B. Raj and J. Koerts, Eds., Springer, 345–381.

    • Crossref
    • Export Citation
  • Trambauer, P., E. Dutra, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook, 2014: Comparison of different evaporation estimates over the African continent. Hydrol. Earth Syst. Sci., 18, 193212, https://doi.org/10.5194/hess-18-193-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, https://doi.org/10.1175/JHM600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., R. Meynadier, J. Sheffield, and E. F. Wood, 2011: Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Processes, 25, 39934010, https://doi.org/10.1002/hyp.8393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vourlitis, G. L., N. P. Filho, M. M. S. Hayashi, J. de S. Nogueira, F. T. Caseiro, and J. H. Campelo Jr., 2002: Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res., 38, 1094, https://doi.org/10.1029/2000WR000122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woldemeskel, F., and A. Sharma, 2016: Should flood regimes change in a warming climate? The role of antecedent moisture conditions. Geophys. Res. Lett., 43, 75567563, https://doi.org/10.1002/2016GL069448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., D. Long, and S. Shang, 2013: Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophys. Res. Lett., 40, 30263030, https://doi.org/10.1002/grl.50450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, and S. W. Running, 2016: A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev.: Water, 3, 834853, https://doi.org/10.1002/wat2.1168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., S. Kim, and A. Sharma, 2019: A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sens. Environ., 223, 8294, https://doi.org/10.1016/j.rse.2019.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., R. Leuning, L. B. Hutley, J. Beringer, I. McHugh, and J. P. Walker, 2010: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution. Water Resour. Res., 46, W05512, https://doi.org/10.1029/2009WR008716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Pena Arancibia, T. McVicar, F. Chiew, J. Vaze, H. Zheng, and Y. P. Wang, 2016a: Monthly global observation-driven Penman-Monteith-Leuning (PML) evapotranspiration and components, v2. CSIRO, accessed 5 June 2020, https://doi.org/10.4225/08/5719A5C48DB85.

    • Crossref
    • Export Citation
  • Zhang, Y., and Coauthors, 2016b: Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep., 6, 19124, https://doi.org/10.1038/srep19124.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 534 0 0
Full Text Views 563 287 28
PDF Downloads 545 250 16

An Assessment of Concurrency in Evapotranspiration Trends across Multiple Global Datasets

Seokhyeon Kim School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Seokhyeon Kim in
Current site
Google Scholar
PubMed
Close
,
Alfonso Anabalón School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Alfonso Anabalón in
Current site
Google Scholar
PubMed
Close
, and
Ashish Sharma School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Ashish Sharma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While broad consensus exists that temperatures are increasing, there is uncertainty surrounding the direction of change manifested in actual evapotranspiration (ET) worldwide. This study assessed trends in ET across the land surface using 11 widely used global datasets for a 32-yr study period. To demonstrate the agreement and disagreement of trends, the spatial distribution, concurrence, correlation, and similitude were estimated. The results showed that while the global average trend in ET is −0.072 mm month−1 yr−1, the trends from individual datasets show a wide range of differences in magnitudes and directions. The considerable differences in the trends in each dataset were found to be weakly correlated with each other and highly divergent in their distribution and direction. No single dataset was sufficiently similar to another to offer a fair representation of trends. In a dynamic trend analysis using a 10-yr moving window over the study period, high concurrence in the significant trends throughout the datasets was found to be rare for each time period. In general, the global data concurrence became negative by 1997 but rebounded to positive toward the end of the study period. In terms of spatial tendency, some regions were more prone to change the direction of their significant trends within the study period. This result shows a high inconsistency in the location and direction of significant ET trends, implying that selection of an ET dataset should consider its spatiotemporal uncertainty before use for any water balance study aiming to infer hydrological change over time.

Current affiliation: SGA S.A., Santiago, Chile.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0059.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashish Sharma, a.sharma@unsw.edu.au

Abstract

While broad consensus exists that temperatures are increasing, there is uncertainty surrounding the direction of change manifested in actual evapotranspiration (ET) worldwide. This study assessed trends in ET across the land surface using 11 widely used global datasets for a 32-yr study period. To demonstrate the agreement and disagreement of trends, the spatial distribution, concurrence, correlation, and similitude were estimated. The results showed that while the global average trend in ET is −0.072 mm month−1 yr−1, the trends from individual datasets show a wide range of differences in magnitudes and directions. The considerable differences in the trends in each dataset were found to be weakly correlated with each other and highly divergent in their distribution and direction. No single dataset was sufficiently similar to another to offer a fair representation of trends. In a dynamic trend analysis using a 10-yr moving window over the study period, high concurrence in the significant trends throughout the datasets was found to be rare for each time period. In general, the global data concurrence became negative by 1997 but rebounded to positive toward the end of the study period. In terms of spatial tendency, some regions were more prone to change the direction of their significant trends within the study period. This result shows a high inconsistency in the location and direction of significant ET trends, implying that selection of an ET dataset should consider its spatiotemporal uncertainty before use for any water balance study aiming to infer hydrological change over time.

Current affiliation: SGA S.A., Santiago, Chile.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0059.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ashish Sharma, a.sharma@unsw.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 360 KB)
Save