• Beck, H. E., N. Vergopolan, M. Pan, V. Levizzani, and E. F. Wood, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castillo, R., R. Nieto, A. Drumond, and L. Gimeno, 2014: The role of the ENSO cycle in the modulation of moisture transport from major oceanic moisture sources. Water Resour. Res., 50, 10461058, https://doi.org/10.1002/2013WR013900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demšar, U., P. Harris, C. Brunsdon, A. S. Fotheringham, and S. McLoone, 2013: Principal component analysis on spatial data: An overview. Ann. Assoc. Amer. Geogr., 103, 106128, https://doi.org/10.1080/00045608.2012.689236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., T. Hastie, L. Johnstone, and R. Tibshirani, 2004: Least angle regression. Ann. Stat., 32, 407499, https://doi.org/10.1214/009053604000000067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ent, R., and H. Savenije, 2013: Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resour. Res., 49, 39934004, https://doi.org/10.1002/WRCR.20296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espinoza, V., D. Waliser, B. Guan, D. Lavers, and F. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 42994308, https://doi.org/10.1029/2017Gl076968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisman, D., A. Tuite, and K. Brown, 2016: Impact of El Niño Southern Oscillation on infectious disease hospitalization risk in the United States. Proc. Natl. Acad. Sci. USA, 113, 14 58914 594, https://doi.org/10.1073/PNAS.1604980113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America: Projections of atmospheric river changes. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015Gl065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and D. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. J. Climate, 16, 27522765, https://doi.org/10.1175/1520-0442(2003)016<2752:HDPFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. Ralph, D. Lavers, and J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America: Atmospheric river climate-scale behavior. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017Gl074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and Coauthors, 2019: Precipitation regime change in western North America: The role of atmospheric rivers. Sci. Rep., 9, 9944, https://doi.org/10.1038/s41598-019-46169-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., 2014: Oceanic sources of continental precipitation. Water Resour. Res., 50, 36473649, https://doi.org/10.1002/2014WR015477.

  • Gimeno, L., A. Drumond, R. Nieto, R. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010Gl043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, C. A., and Coauthors, 2019: The climate data toolbox for MATLAB. Geochem. Geophys. Geosyst., 20, 37743781, https://doi.org/10.1029/2019GC008392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. Moore, and S. Jevrejeva, 2004: Application of cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, https://doi.org/10.5194/NPG-11-561-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., L. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015Gl067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hans, C., 2009: Bayesian lasso regression. Biometrika, 96, 835845, https://doi.org/10.1093/biomet/asp047.

  • Holman, K., and S. Vavrus, 2012: Understanding simulated extreme precipitation events in Madison, Wisconsin, and the role of moisture flux convergence during the late twentieth and twenty-first centuries. J. Hydrometeor., 13, 877894, https://doi.org/10.1175/JHM-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017: Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 56055619, https://doi.org/10.1175/JCLI-d-16-0875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, https://doi.org/10.1175/2009JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, https://doi.org/10.1175/JCLI-D-12-00401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobold, M., and K. Sušelj, 2005: Precipitation forecasts and their uncertainty as input into hydrological models. Hydrol. Earth Syst. Sci., 9, 322332, https://doi.org/10.5194/hess-9-322-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., L. Zhang, and W. Wang, 2013: Sea surface temperature–precipitation relationship in different reanalyses. Mon. Wea. Rev., 141, 11181123, https://doi.org/10.1175/MWR-D-12-00214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labat, D., 2005: Recent advances in wavelet analyses: Part I. A review of concepts. J. Hydrol., 314, 275288, https://doi.org/10.1016/j.jhydrol.2005.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D., F. Ralph, D. Waliser, A. Gershunov, and M. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015Gl064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., L. Li, S. Guo, L. Xiong, W. Zhang, J. Zhang, and C.-Y. Xu, 2015: Optimal design of seasonal flood limited water levels and its application for the Three Gorges Reservoir. J. Hydrol., 527, 10451053, https://doi.org/10.1016/j.jhydrol.2015.05.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., T. Mitchell, G. Mauger, and E. Salathé, 2018: Local enhancement of extreme precipitation during atmospheric rivers as simulated in a regional climate model. J. Hydrometeor., 19, 14291446, https://doi.org/10.1175/JHM-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., and U. Lall, 2017: Tropical moisture exports, extreme precipitation and floods in northeastern US. Earth Sci. Res., 6, 91, https://doi.org/10.5539/esr.v6n2p91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ly, S., C. Charles, and A. Degré, 2013: Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review. Biotechnol. Agron. Soc. Environ., 17, 392406.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the Southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, https://doi.org/10.1029/2005Gl023680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, J., U. Lall, Y. Kushnir, A. W. Robertson, and R. Seager, 2013: Dynamical structure of extreme floods in the U.S. Midwest and the United Kingdom. J. Hydrometeor., 14, 485504, https://doi.org/10.1175/JHM-D-12-059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P., F. Ralph, G. Wick, J. Lundquist, and M. Dettinger, 2008a: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P., and Coauthors, 2008b: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., R. Castillo, A. Drumond, and L. Gimeno, 2014: A catalog of moisture sources for continental climatic regions. Water Resour. Res., 50, 53225328, https://doi.org/10.1002/2013WR013901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouyang, R., W. Liu, G. Fu, C. Liu, L. Hu, and H. Wang, 2014: Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years. Hydrol. Earth Syst. Sci., 18, 36513661, https://doi.org/10.5194/hess-18-3651-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., K. J. Beven, N. M. Hunter, P. D. Bates, B. T. Gouweleeuw, J. Thielen, and A. P. J. de Roo, 2005: Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrol. Earth Syst. Sci., 9, 381393, https://doi.org/10.5194/hess-9-381-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T., and G. Casella, 2008: The Bayesian lasso. J. Amer. Stat. Assoc., 103, 681686, https://doi.org/10.1198/016214508000000337.

  • Payne, A., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos., 120, 11 17311 190, https://doi.org/10.1002/2015JD023586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., R. Knutti, F. Lehner, C. Deser, and B. M. Sanderson, 2017: Precipitation variability increases in a warmer climate. Sci. Rep., 7, 17966, https://doi.org/10.1038/s41598-017-17966-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., M. Halpert, S. Baxter, and M. Charles, 2019: Toward improving short-lead monthly forecast. Climate Prediction S&T Digest, April 2019, NOAA/NWS, Silver Spring, MD, 164–165, https://doi.org/10.25923/ae2c-v522.

    • Crossref
    • Export Citation
  • Perry, S. J., S. McGregor, A. S. Gupta, and M. H. England, 2017: Future changes to El Niño–Southern Oscillation temperature and precipitation teleconnections. Geophys. Res. Lett., 44, 10 60810 616, https://doi.org/10.1002/2017GL074509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, https://doi.org/10.1007/s00382-012-1337-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep., 7, 10783, https://doi.org/10.1038/s41598-017-11285-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räty, O., J. Räisänen, and J. S. Ylhäisi, 2014: Evaluation of delta change and bias correction methods for future daily precipitation: Intermodel cross-validation using ENSEMBLES simulations. Climate Dyn., 42, 22872303, https://doi.org/10.1007/s00382-014-2130-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivera, E. R., F. Dominguez, and C. L. Castro, 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813829, https://doi.org/10.1175/JHM-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sang, Y.-F., 2013: A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res., 122, 815, https://doi.org/10.1016/j.atmosres.2012.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Z., H. Fu, D. Li, O. Altan, and T. Cheng, 2019: Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sens. Environ., 232, 111338, https://doi.org/10.1016/j.rse.2019.111338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinschneider, S., and U. Lall, 2015: A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports. Water Resour. Res., 51, 14721492, https://doi.org/10.1002/2014WR016664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., B. Langenbrunner, J. D. Neelin, and A. Hall, 2018: Increasing precipitation volatility in twenty-first-century California. Nat. Climate Change, 8, 427433, https://doi.org/10.1038/s41558-018-0140-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibshirani, R., 1996: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc., 58B, 267288, https://www.jstor.org/stable/2346178.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Viale, M., R. Valenzuela, R. Garreaud, and F. Ralph, 2018: Impacts of atmospheric rivers on precipitation in southern south America. J. Hydrometeor., 19, 16711687, https://doi.org/10.1175/JHM-D-18-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

  • Zhu, Y., and R. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 630 0 0
Full Text Views 389 195 9
PDF Downloads 377 169 5

Seasonal Precipitation Predictability for the Northern Hemisphere Using Concurrent and Preseason Atmospheric Water Vapor Transport and Sea Surface Temperature

Shida Gao State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan, China
Department of Ecology and Environment of Guangdong Province, Guangzhou, China
Columbia Water Center, Columbia University, New York, New York

Search for other papers by Shida Gao in
Current site
Google Scholar
PubMed
Close
,
Pan Liu State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University, Wuhan, China

Search for other papers by Pan Liu in
Current site
Google Scholar
PubMed
Close
, and
Upmanu Lall Columbia Water Center, Columbia University, New York, New York
Department of Earth and Environmental Engineering, Columbia University, New York, New York

Search for other papers by Upmanu Lall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Integrated atmospheric water vapor transport (IVT) is a determinant of global precipitation. In this paper, using the CERA-20C climate reanalysis dataset, we explore three questions in Northern Hemisphere precipitation for four seasons: 1) What is the covariability between the leading spatiotemporal modes of seasonal sea surface temperature (SST), the seasonal IVT, and the seasonal precipitation for the Northern Hemisphere? 2) How well can the leading spatial modes of seasonal precipitation be reconstructed from the leading modes of IVT and SST for the same season? 3) How well can the leading modes of precipitation for the next season be predicted from the leading modes of the current season’s SST and IVT? Wavelet analyses identify covariation in the leading modes of seasonal precipitation and those of IVT and SST in the 2–8-yr band, with the highest amplitude in the March–May (MAM) season, and provide a firm physical explanation for the potential predictability. We find that a subset of the 10 leading principal components of the seasonal IVT and SST fields has significant trends in connections with seasonal precipitation modes, and provides an accurate statistical concurrent reconstruction and one-season-ahead forecast of the leading seasonal precipitation modes, thus providing a pathway to improving the understanding and prediction of precipitation extremes in the context of climate change attribution, seasonal and longer prediction, and climate change scenarios. The same-season reconstruction model can explain 76% of the variance, and the next-season forecast model can explain 58% variance of hemispheric precipitation on average.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0107.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pan Liu, liupan@whu.edu.cn

Abstract

Integrated atmospheric water vapor transport (IVT) is a determinant of global precipitation. In this paper, using the CERA-20C climate reanalysis dataset, we explore three questions in Northern Hemisphere precipitation for four seasons: 1) What is the covariability between the leading spatiotemporal modes of seasonal sea surface temperature (SST), the seasonal IVT, and the seasonal precipitation for the Northern Hemisphere? 2) How well can the leading spatial modes of seasonal precipitation be reconstructed from the leading modes of IVT and SST for the same season? 3) How well can the leading modes of precipitation for the next season be predicted from the leading modes of the current season’s SST and IVT? Wavelet analyses identify covariation in the leading modes of seasonal precipitation and those of IVT and SST in the 2–8-yr band, with the highest amplitude in the March–May (MAM) season, and provide a firm physical explanation for the potential predictability. We find that a subset of the 10 leading principal components of the seasonal IVT and SST fields has significant trends in connections with seasonal precipitation modes, and provides an accurate statistical concurrent reconstruction and one-season-ahead forecast of the leading seasonal precipitation modes, thus providing a pathway to improving the understanding and prediction of precipitation extremes in the context of climate change attribution, seasonal and longer prediction, and climate change scenarios. The same-season reconstruction model can explain 76% of the variance, and the next-season forecast model can explain 58% variance of hemispheric precipitation on average.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0107.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pan Liu, liupan@whu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 5.51 MB)
Save