• Aksoy, H., I. Kurt, and E. Eris, 2009: Filtered smoothed minima baseflow separation method. J. Hydrol., 372, 94101, https://doi.org/10.1016/j.jhydrol.2009.03.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., R. S. Muttiah, R. Srinivasan, and P. M. Allen, 2000: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol., 227, 2140, https://doi.org/10.1016/S0022-1694(99)00139-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnoux, M., F. Barbecot, E. Gibert-Brunet, J. Gibson, E. Rosa, A. Noret, and G. Monvoisin, 2017: Geochemical and isotopic mass balances of kettle lakes in southern Quebec (Canada) as tools to document variations in groundwater quantity and quality. Environ. Earth Sci., 76, 106, https://doi.org/10.1007/s12665-017-6410-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, P., X. Liu, T. Yang, K. Liang, and C. Liu, 2016: Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan Plateau. J. Geophys. Res. Atmos., 121, 12 18012 197, https://doi.org/10.1002/2016JD025501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, H., J. Ma, W. Zheng, and J. Zeng, 2016: Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos., 121, 26582678, https://doi.org/10.1002/2015JD024131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, J. P., D. J. Allen, and K. J. Griffiths, 2009: Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK. J. Hydrol., 373, 164176, https://doi.org/10.1016/j.jhydrol.2009.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boughton, W. C., 1993: A hydrograph-based model for estimating the water yield of ungauged catchments. Natl. Conf. Publ. - Inst. Eng., Aust., 93, 317324.

    • Search Google Scholar
    • Export Citation
  • Brooks, S. P., 1998: Markov chain Monte Carlo method and its application. Statistician, 47, 69100, https://doi.org/10.1111/1467-9884.00117.

    • Search Google Scholar
    • Export Citation
  • Campbell, D. R., 2019: Early snowmelt projected to cause population decline in a subalpine plant. Proc. Natl. Acad. Sci. USA, 116, 12 90112 906, https://doi.org/10.1073/pnas.1820096116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., S. Belair, and B. Bilodeau, 2015: The Canadian Land Data Assimilation System (CaLDAS): Description and synthetic evaluation study. J. Hydrometeor., 16, 12931314, https://doi.org/10.1175/JHM-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, T. G., 1991: Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon. Water Resour. Res., 27, 17831784, https://doi.org/10.1029/91WR01007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, T. G., and A. I. Maxwell, 1996: Baseflow separation - comparison of numerical methods with tracer experiments. Natl. Conf. Publ. - Inst. Eng., Aust., 96/05, 539545.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and R. S. V. Teegavarapu, 2020: Comparative analysis of four baseflow separation methods in the south Atlantic-Gulf Region of the U.S. Water, 12, 120, https://doi.org/10.3390/w12010120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and et al. , 2010: Recent La Plata basin drought conditions observed by satellite gravimetry. J. Geophys. Res., 115, D22108, https://doi.org/10.1029/2010JD014689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, J. Qin, L. Zhao, W. Tang, and M. Han, 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 44664475, https://doi.org/10.1002/jgrd.50301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and et al. , 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

  • Eckhardt, K., 2008: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol., 352, 168173, https://doi.org/10.1016/j.jhydrol.2008.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., G. Huang, B. W. Baetz, Y. Li, and K. Huang, 2017: Development of a Copula-based Particle Filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resour. Res., 53, 48504875, https://doi.org/10.1002/2016WR020144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassman, P. W., M. R. Reyes, C. H. Green, and J. G. Arnold, 2007: The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE, 50, 12111250, https://doi.org/10.13031/2013.23637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghazanfari, S., S. Pande, M. Hashemy, and B. Sonneveld, 2013: Diagnosis of GLDAS LSM based aridity index and dryland identification. J. Environ. Manage., 119, 162172, https://doi.org/10.1016/j.jenvman.2013.01.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, M. A., 1978: Flood routing by the Muskingum method. J. Hydrol., 36, 353363, https://doi.org/10.1016/0022-1694(78)90153-1.

  • Graham, D. N., and M. B. Butts, 2005: Flexible, integrated watershed modelling with MIKE SHE. Watershed Models. V. P. Singh and D. K. Frevert, Eds., CRC Press, 245–272.

    • Crossref
    • Export Citation
  • Guang-Te, W., and V. P. Singh, 1992: Muskingum method with variable parameters for flood routing in channels. J. Hydrol., 134, 5776, https://doi.org/10.1016/0022-1694(92)90028-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustard, A., A. Bullock, and J. M. Dixon, 1992: Low flow estimation in the United Kingdom. Institute of Hydrology Rep. 108, 88 pp., http://nora.nerc.ac.uk/id/eprint/6050/1/IH_108.pdf.

  • Haario, H., M. Laine, M. Lehtinen, E. Saksman, and J. Tamminen, 2004: Markov chain Monte Carlo methods for high dimensional inversion in remote sensing. J. Roy. Stat. Soc., 66B, 591607, https://doi.org/10.1111/j.1467-9868.2004.02053.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harbaugh, A. W., 2005: MODFLOW-2005, the U.S. Geological Survey’s modular ground water flow model. USGS Techniques and Methods, 6-A16, 253 pp., https://doi.org/10.3133/tm6A16.

    • Crossref
    • Export Citation
  • Institute of Hydrology, 1980: Low flow studies. Institute of Hydrology, 42 pp., http://nora.nerc.ac.uk/id/eprint/9093/1/Low_Flow_01.pdf.

  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.

  • Laloy, E., and J. A. Vrugt, 2012: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing. Water Resour. Res., 48, 182205, https://doi.org/10.1029/2011WR010608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lammers, R. B., A. I. Shiklomanov, C. J. Vörösmarty, B. M. Fekete, and B. J. Peterson, 2001: Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res., 106, 33213334, https://doi.org/10.1029/2000JD900444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., M. S. Wigmosta, H. Wu, M. Huang, Y. Ke, A. M. Coleman, and L. R. Leung, 2013: A physically based runoff routing model for land surface and earth system models. J. Hydrometeor., 14, 808828, https://doi.org/10.1175/JHM-D-12-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276, https://doi.org/10.1175/JHM548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyne, V. D., and M. Hollick, 1979: Stochastic time-variable rainfall-runoff modeling. Natl. Conf. Publ. - Inst. Eng., Aust., 79/10, 8993.

    • Search Google Scholar
    • Export Citation
  • Markstrom, S. L., R. G. Niswonger, R. S. Regan, D. E. Prudic, and P. M. Barlow, 2008: GSFLOW—Coupled ground-water and surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). USGS Techniques and Methods 6-D1, 240 pp., https://pubs.usgs.gov/tm/tm6d1/.

    • Crossref
    • Export Citation
  • Marsh, P., 1999: Snowcover formation and melt: Recent advances and future prospects. Hydrol. Processes, 13, 21172134, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2117::AID-HYP869>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinec, J., 1975: Snowmelt runoff model for stream flow forecasts. Hydrol. Res., 6, 145154, https://doi.org/10.2166/nh.1975.0010.

  • Mazvimavi, D., A. M. J. Meijerink, and A. Stein, 2004: Prediction of base flows from basin characteristics: A case study from Zimbabwe. Hydrol. Sci. J., 49, 703715, https://doi.org/10.1623/hysj.49.4.703.54428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, Y., and E. N. Anagnostou, 2015: A hydrograph separation method based on information from rainfall and runoff records. J. Hydrol., 523, 636649, https://doi.org/10.1016/j.jhydrol.2015.01.083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and et al. , 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, R. J., and T. A. Mcmahon, 1990: Evaluation of automated techniques for base-flow and recession analyses. Water Resour. Res., 26, 14651473, https://doi.org/10.1029/WR026i007p01465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panday, P. K., C. A. Williams, K. E. Frey, and M. E. Brown, 2014: Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Processes, 28, 53375353, https://doi.org/10.1002/hyp.10005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettyjohn, W. A., and R. J. Henning, 1979: Preliminary estimate of regional effective ground-water recharge rates in Ohio. Project Completion Rep. 552, Water Resources Center, Ohio State University, 323 pp., https://kb.osu.edu/handle/1811/36354.

  • Piggott, A. R., S. Moin, and C. Southam, 2005: A revised approach to the UKIH method for the calculation of baseflow. Hydrol. Sci. J., 50, 911920, https://doi.org/10.1623/hysj.2005.50.5.911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q. Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., D. H. Bromwich, M. P. Clark, A. J. Etringer, T. Zhang, and R. Lammers, 2002: Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res., 108, 8160, https://doi.org/10.1029/2001JD000919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A. K., and et al. , 2017: Estimation of quantitative measures of total water storage variation from GRACE and GLDAS-NOAH satellites using geospatial technology. Quat. Int., 444, 191200, https://doi.org/10.1016/j.quaint.2017.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloto, R. A., and M. Y. Crouse, 1996: HYSEP: A computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey Water-Resources Investigations Rep. 96-4040, 54 pp., https://doi.org/10.3133/wri964040.

    • Crossref
    • Export Citation
  • Strupczewski, W. G., and Z. W. Kundzewicz, 1980: Muskingum method revisited. J. Hydrol., 48, 327342, https://doi.org/10.1016/0022-1694(80)90124-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Therrien, R., R. McLaren, E. Sudicky, and S. Panday, 2010: HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. University of Waterloo and Université Laval, 456 pp., https://www.ggl.ulaval.ca/fileadmin/ggl/documents/rtherrien/hydrogeosphere.pdf.

  • Tung, Y. K., 1985: River flood routing by nonlinear Muskingum method. J. Hydraul. Eng., 111, 14471460, https://doi.org/10.1061/(ASCE)0733-9429(1985)111:12(1447).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C., and et al. , 2001: The hydrologic cycle and its role in Arctic and global environmental change: A rationale and strategy for synthesis study, Arctic Research Consortium of the U.S., 84 pp.

  • Vrugt, J. A., and C. J. F. Ter Braak, 2011: DREAM(D): An adaptive Markov chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems. Hydrol. Earth Syst. Sci., 15, 37013713, https://doi.org/10.5194/hess-15-3701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, K. L., and T. L. Wahl, 1995: Determining the flow of Comal Springs at New Braunfels, Texas. Texas Water '95, San Antonio, TX, American Society of Civil Engineers, 77–86, http://www.usbr.gov/tsc/techreferences/hydraulics_lab/pubs/PAP/PAP-0708.pdf.

  • Wang, Q., Y. Liu, X. Zhang, and B. Yaquan, 2019: Improvement research of flood routing model in Aksu River basin. IOP Conf. Ser.: Earth Environ., 300, 032011, https://doi.org/10.1088/1755-1315/330/3/032011.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Cui, X. Wang, and X. Chen, 2016: Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at the monthly scale. J. Hydrometeor., 17, 28152833, https://doi.org/10.1175/JHM-D-15-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wöhling, T., and J. A. Vrugt, 2011: Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data. Water Resour. Res., 47, W04510, https://doi.org/10.1029/2010WR009265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, W., X. Zeng, S. Zhang, J. Wu, D. Wang, and X. Zhu, 2019: Bayesian evaluation of meteorological datasets for modeling snowmelt runoff in Tizinafu watershed in Western China. Theor. Appl. Climatol., 138, 19912006, https://doi.org/10.1007/s00704-019-02944-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Robinson, Y. Zhao, T. Estilow, and B. Ye, 2003: Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J. Geophys. Res., 108, 4578, https://doi.org/10.1029/2002JD003149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, C., Y. Zhang, and Z. Li, 2013: Application and comparison of cell-to-cell diffusion wave and Muskingum routing methods. J. Hohai Univ., 41, 610, https://doi.org/10.3876/j.issn.1000-1980.2013.01.002.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., M. Rodell, and F. Olivera, 2010: Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res., 46, W06507, https://doi.org/10.1029/2009WR007811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, S., J. Chen, and F. Sheng, 2010: Application of environment isotope in base flow calculation for small costal basin in Zhuhai. J. China Hydrol., 2010-02, https://en.cnki.com.cn/Article_en/CJFDTotal-SWZZ201002006.htm.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., J. Wu, D. Wang, and X. Zhu, 2016: Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion. Environ. Res., 148, 586594, https://doi.org/10.1016/j.envres.2015.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. Zeng, C. Chen, D. Chen, and L. Wu, 2015: Efficient Bayesian experimental design for contaminant source identification. Water Resour. Res., 51, 576598, https://doi.org/10.1002/2014WR015740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Li, L. Zeng, and L. Wu, 2016: An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems. Water Resour. Res., 52, 59715984, https://doi.org/10.1002/2016WR018598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. L., Y. Li, G. Huang, C. Wang, and G. Cheng, 2016: Evaluation of uncertainties in input data and parameters of a hydrological model using a Bayesian framework: A case study of a snowmelt-precipitation-driven watershed. J. Hydrometeor., 17, 23332350, https://doi.org/10.1175/JHM-D-15-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2007: Study on snowmelt runoff simulation in the Kaidu River basin. Sci. China. Ser. D Earth Sci., 50, 2635, https://doi.org/10.1007/s11430-007-5007-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, R., 1992: The Xinanjiang model applied in China. J. Hydrol., 135, 371381, https://doi.org/10.1016/0022-1694(92)90096-E.

All Time Past Year Past 30 Days
Abstract Views 264 264 28
Full Text Views 45 45 5
PDF Downloads 47 47 8

Modeling the Snowmelt Runoff Process of the Tizinafu River Basin, Northwest China, with GLDAS Data and Bayesian Uncertainty Analysis

View More View Less
  • 1 Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
  • | 2 Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
© Get Permissions
Restricted access

Abstract

The climate of the Tizinafu River basin is characterized by low temperature and sparse precipitation, and snow and glacier melt serve as the main water resource in this area. Modeling the snowmelt runoff process has great significance for local ecosystems and residents. The total streamflow of the Tizinafu River basin was divided into surface streamflow and baseflow. The surface streamflow was estimated using the routing model (RM) with Noah runoff data from Global Land Data Assimilation (GLDAS), and the parameter uncertainty of the RM was quantified through Markov chain Monte Carlo simulation. Additionally, the 10 commonly used baseflow separation methods of four categories [digital filter, hydrograph separation program (HYSEP), baseflow index, and Kalinlin methods] were used to generate the baseflow and were then evaluated by their performance in total streamflow simulation. The results demonstrated that the RM driven by GLDAS runoff data could reproduce the runoff process of the Tizinafu River basin. RM-Hl (local minimum HYSEP method) achieved the best performance in the total streamflow simulation, with Nash–Sutcliffe efficiency (NSE) coefficients of 0.82 and 0.93, relative errors of −0.40% and 10.50%, and observation inclusion ratios C of 62.07% and 68.52% for the calibration and verification periods, respectively. The local minimum HYSEP method was most suitable for describing the baseflow of the Tizinafu River basin among the 10 baseflow separation methods. However, digital filter methods exhibited weak performance in baseflow separation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0162.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiankui Zeng, xiankuizeng@nju.edu.cn

Abstract

The climate of the Tizinafu River basin is characterized by low temperature and sparse precipitation, and snow and glacier melt serve as the main water resource in this area. Modeling the snowmelt runoff process has great significance for local ecosystems and residents. The total streamflow of the Tizinafu River basin was divided into surface streamflow and baseflow. The surface streamflow was estimated using the routing model (RM) with Noah runoff data from Global Land Data Assimilation (GLDAS), and the parameter uncertainty of the RM was quantified through Markov chain Monte Carlo simulation. Additionally, the 10 commonly used baseflow separation methods of four categories [digital filter, hydrograph separation program (HYSEP), baseflow index, and Kalinlin methods] were used to generate the baseflow and were then evaluated by their performance in total streamflow simulation. The results demonstrated that the RM driven by GLDAS runoff data could reproduce the runoff process of the Tizinafu River basin. RM-Hl (local minimum HYSEP method) achieved the best performance in the total streamflow simulation, with Nash–Sutcliffe efficiency (NSE) coefficients of 0.82 and 0.93, relative errors of −0.40% and 10.50%, and observation inclusion ratios C of 62.07% and 68.52% for the calibration and verification periods, respectively. The local minimum HYSEP method was most suitable for describing the baseflow of the Tizinafu River basin among the 10 baseflow separation methods. However, digital filter methods exhibited weak performance in baseflow separation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0162.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiankui Zeng, xiankuizeng@nju.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 218 KB)
Save