• Ayat, H., M. Reza Kavianpour, S. Moazami, Y. Hong, and E. Ghaemi, 2018: Calibration of weather radar using region probability matching method (RPMM). Theor. Appl. Climatol., 134, 165176, https://doi.org/10.1007/s00704-017-2266-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009a: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, https://doi.org/10.1175/2009JHM1139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, and R. J. Kuligowski, 2009b: Evaluating the utility of multispectral information in delineating the areal extent of precipitation. J. Hydrometeor., 10, 684700, https://doi.org/10.1175/2009JHM1077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, 2014: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, https://doi.org/10.1002/2013WR014566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. J. Bormann, and T. H. Painter, 2018: Using the airborne snow observatory to assess remotely sensed snowfall products in the California Sierra Nevada. Water Resour. Res., 54, 73317346, https://doi.org/10.1029/2018WR023108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2017: Hurricane Hermine. National Hurricane Center, 63 pp., https://www.nhc.noaa.gov/data/tcr/AL092016_Hermine.pdf.

  • Beven, J. L., II, and R. Berg, 2018: Hurricane Nate. National Hurricane Center, 415 pp., https://www.nhc.noaa.gov/data/tcr/AL162017_Nate.pdf.

  • Beven, J. L., II, R. Berg, and A. Hagen, 2019: Hurricane Michael. National Hurricane Center, 86 pp., https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

  • Blake, E. S., and D. A. Zelinsky, 2018: Hurricane Harvey. National Hurricane Center, 77 pp., https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

  • Bullock, R., B. Brown, and T. Fowler, 2016: Method for object-based diagnostic evaluation. NCAR Tech. Note NCAR/TN-532+STR, National Center for Atmospheric Research, 84 pp., https://doi.org/10.5065/D61V5CBS.

    • Crossref
    • Export Citation
  • Bytheway, J. L., and C. D. Kummerow, 2015: Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central U.S. J. Adv. Model. Earth Syst., 7, 12481264, https://doi.org/10.1002/2015MS000497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: Hurricane Irma. National Hurricane Center, 111 pp., https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

  • Chen, M., S. Nabih, N. S. Brauer, S. Gao, J. J. Gourley, Z. Hong, R. L. Kolar, and Y. Hong, 2020: Can remote sensing technologies capture the extreme precipitation event and its cascading hydrological response? A case study of Hurricane Harvey using EF5 modeling framework. Remote Sens., 12, 445, https://doi.org/10.3390/rs12030445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542 https://doi.org/10.1175/WAF-D-13-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, Z. Feng, and J. Fan, 2020: Can the GPM IMERG final product accurately represent MCSs’ precipitation characteristics over the central and eastern United States? J. Hydrometeor., 21, 3957, https://doi.org/10.1175/JHM-D-19-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. G. Brown, R. Bullock, and J. Halley-Gotway, 2009: The Method for Object-Based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program. Wea. Forecasting, 24, 12521267, https://doi.org/10.1175/2009WAF2222241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., and K. K. Yilmaz, 2014: Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeor., 15, 14981516, https://doi.org/10.1175/JHM-D-13-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., E. Anagnostou, M. N. Anagnostou, J. Kalogiros, D. Casella, A. C. Marra, G. Panegrossi, and P. Sano, 2018: Passive microwave rainfall error analysis using high-resolution X-band dual-polarization radar observations in complex terrain. IEEE Trans. Geosci. Remote Sens., 56, 25652586, https://doi.org/10.1109/TGRS.2017.2763622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derin, Y., and Coauthors, 2019: Evaluation of GPM-era global satellite precipitation products over multiple complex terrain regions. Remote Sens., 11, 2936, https://doi.org/10.3390/rs11242936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., and Coauthors, 2019: Review of Australian east coast low pressure systems and associated extremes. Climate Dyn., 53, 48874910, https://doi.org/10.1007/s00382-019-04836-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElSaadani, M., W. F. Krajewski, and D. L. Zimmerman, 2018: River network based characterization of errors in remotely sensed rainfall products in hydrological applications. Remote Sens. Lett., 9, 743752, https://doi.org/10.1080/2150704X.2018.1475768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, E. da S., and Coauthors, 2020: The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties. J. Hydrol., 589, 125128, https://doi.org/10.1016/j.jhydrol.2020.125128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furl, C., D. Ghebreyesus, and H. Sharif, 2018: Assessment of the performance of satellite-based precipitation products for flood events across diverse spatial scales using GSSHA modeling system. Geosciences, 8, 191, https://doi.org/10.3390/geosciences8060191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaona, M. F. R., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2016: First-year evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (V03D). J. Hydrometeor., 17, 27992814, https://doi.org/10.1175/JHM-D-16-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., P.-E. Kirstetter, Y. E. Hong, N. J. Carr, J. J. Gourley, W. Petersen, and Y. Zheng, 2017: Understanding overland multisensor satellite precipitation error in TMPA-RT products. J. Hydrometeor., 18, 285306, https://doi.org/10.1175/JHM-D-15-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., P. Kirstetter, Y. E. Hong, J. J. Gourley, G. J. Huffman, W. A. Petersen, X. Xue, and M. R. Schwaller, 2018: To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos., 123, 16941707, https://doi.org/10.1002/2017JD027606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghaemi, E., M. Kavianpour, S. Moazami, Y. Hong, and H. Ayat, 2017: Uncertainty analysis of radar rainfall estimates over two different climates in Iran. Int. J. Remote Sens., 38, 51065126, https://doi.org/10.1080/01431161.2017.1335909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., S. Chen, A. Bao, A. Behrangi, Y. Hong, F. Ndayisaba, J. Hu, and P. M. Stepanian, 2016: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res., 176–177, 121133, https://doi.org/10.1016/j.atmosres.2016.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta, 1996: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M.-K., 1962: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory, 49, 179187.

  • Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 32 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

  • Huffman, G. J., and Coauthors, 2020: Early results for version 06 IMERG. NASA, 20 pp., https://ntrs.nasa.gov/citations/20190029175.

  • Hunter, S. M., 1996: WSR-88D radar rainfall estimation: capabilities, limitations and potential improvements. Natl. Wea. Dig., 20, 26381.

    • Search Google Scholar
    • Export Citation
  • Khan, S., V. Maggioni, and P.-E. Kirstetter, 2018: Investigating the potential of using satellite-based precipitation radars as reference for evaluating multisatellite merged products. J. Geophys. Res. Atmos., 123, 86468660, https://doi.org/10.1029/2018JD028584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodadoust Siuki, S., B. Saghafian, and S. Moazami, 2017: Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products. Int. J. Remote Sens., 38, 558571, https://doi.org/10.1080/01431161.2016.1268735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and P. M. Jackson, 1993: Weather radar performance at long range-simulated and observed. J. Appl. Meteor., 32, 975985, https://doi.org/10.1175/1520-0450(1993)032<0975:WRPALR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, https://doi.org/10.1016/S0309-1708(02)00062-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., Y. Li, Y. Hao, and Y. Zhang, 2016: Improvements to the GOES-R rainfall rate algorithm. J. Hydrometeor., 17, 16931704, https://doi.org/10.1175/JHM-D-15-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langston, C., J. Zhang, and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, https://doi.org/10.1175/JTECH2001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengfeld, K., P.-E. Kirstetter, H. J. Fowler, J. Yu, A. Becker, Z. Flamig, and J. J. Gourley, 2020: Use of radar data for characterizing extreme precipitation at fine scales and short durations. Environ. Res. Lett., 15, 085003, https://doi.org/10.1088/1748-9326/ab98b4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., K.-L. Hsu, A. AghaKouchak, and S. Sorooshian, 2015: An object-based approach for verification of precipitation estimation. Int. J. Remote Sens., 36, 513529, https://doi.org/10.1080/01431161.2014.999170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., K.-L. Hsu, A. AghaKouchak, and S. Sorooshian, 2016: Object-based assessment of satellite precipitation products. Remote Sens., 8, 547, https://doi.org/10.3390/rs8070547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Wasko, F. Johnson, J. P. Evans, and A. Sharma, 2018: Can regional climate modeling capture the observed changes in spatial organization of extreme storms at higher temperatures? Geophys. Res. Lett., 45, 44754484, https://doi.org/10.1029/2018GL077716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, https://doi.org/10.1175/JHM-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., D. Yang, and Y. Hong, 2013: Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol., 500, 157169, https://doi.org/10.1016/j.jhydrol.2013.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., M. Chen, S. Gao, Z. Hong, G. Tang, Y. Wen, J. J. Gourley, and Y. Hong, 2020: Cross-examination of similarity, difference and deficiency of gauge, radar and satellite precipitation measuring uncertainties for extreme events using conventional metrics and multiplicative triple collocation. Remote Sens., 12, 1258, https://doi.org/10.3390/rs12081258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moazami, S., S. Golian, M. R. Kavianpour, and Y. Hong, 2013: Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens., 34, 81568171, https://doi.org/10.1080/01431161.2013.833360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moazami, S., S. Golian, M. R. Kavianpour, and Y. Hong, 2014: Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmos. Res., 137, 145166, https://doi.org/10.1016/j.atmosres.2013.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moazami, S., S. Golian, Y. Hong, C. Sheng, and M. R. Kavianpour, 2016: Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran. Hydrol. Sci. J., 61, 420440, https://doi.org/10.1080/02626667.2014.987675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammed, S. A., M. A. Hamouda, M. T. Mahmoud, and M. M. Mohamed, 2020: Performance of GPM-IMERG precipitation products under diverse topographical features and multiple-intensity rainfall in an arid region. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., and P. Kirstetter, 2018: Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Quart. J. Roy. Meteor. Soc., 144, 270281, https://doi.org/10.1002/qj.3218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., U. Foelsche G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omranian, E., H. Sharif, and A. Tavakoly, 2018: How well can Global Precipitation Measurement (GPM) capture hurricanes? Case study: Hurricane Harvey. Remote Sens., 10, 1150, https://doi.org/10.3390/rs10071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OpenCV, 2020: Structural analysis and shape descriptors. OpenCV, https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#gaf2b97a230b51856d09a2d934b78c015f.

  • Panahi, M., and A. Behrangi, 2020: Comparative analysis of snowfall accumulation and gauge undercatch correction factors from diverse data sets: In situ, satellite, and reanalysis. Asia-Pac. J. Atmos. Sci., 56, 615628, https://doi.org/10.1007/s13143-019-00161-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., A. Di Luca, and J. P. Evans, 2018: Independently assessing the representation of midlatitude cyclones in high-resolution reanalyses using satellite observed winds. Int. J. Climatol., 38, 13141327, https://doi.org/10.1002/joc.5245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, https://doi.org/10.1175/JAMC-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porcú, F., M. Borga, and F. Prodi, 1999: Rainfall estimation by combining radar and infrared satellite data for nowcasting purposes. Meteor. Appl., 6, 289300, https://doi.org/10.1017/S1350482799001243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, https://doi.org/10.5194/hess-19-2037-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305327, https://doi.org/10.1002/joc.4706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2013: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, https://doi.org/10.1007/s00382-013-1744-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2017: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95110, https://doi.org/10.1007/s00382-017-3993-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., A. Overeem, A. M. Brasjen, J. F. Meirink, H. Leijnse, and R. Uijlenhoet, 2017: Evaluation of rainfall products derived from satellites and microwave links for the Netherlands. IEEE Trans. Geosci. Remote Sens., 55, 68496859, https://doi.org/10.1109/TGRS.2017.2735439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., L. V. Alexander, G. Potter, M. Bador, R. Jucá, S. Contractor, M. G. Bosilovich, and S. Cloché, 2019: FROGS: a daily 1◦ × 1◦ gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data, 11, 10171035, https://doi.org/10.5194/ESSD-11-1017-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghi, L., B. Saghafian, and S. Moazami, 2019: Evaluation of IMERG and MRMS remotely sensed snowfall products. Int. J. Remote Sens., 40, 41754192, https://doi.org/10.1080/01431161.2018.1562259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and R. J. Kuligowski, 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18, 10371051, https://doi.org/10.1175/1520-0434(2003)018<1037:SAOOOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., W. F. Krajewski, A. Kruger, P. Domaszczynski, J. A. Smith, and M. Steiner, 2011: Radar-rainfall estimation algorithms of Hydro-NEXRAD. J. Hydroinf., 13, 277291, https://doi.org/10.2166/hydro.2010.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., W. F. Krajewski, and J. A. Smith, 2014: Four-dimensional reflectivity data comparison between two ground-based radars: Methodology and statistical analysis. Hydrol. Sci. J., 59, 13201334, https://doi.org/10.1080/02626667.2013.839872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifi, E., R. Steinacker, and B. Saghafian, 2016: Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens., 8, 135, https://doi.org/10.3390/rs8020135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, https://doi.org/10.1175/JAMC-D-12-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A comparison of precipitation occurrence from the NCEP stage IV QPE product and the CloudSat cloud profiling radar. J. Hydrometeor., 15, 444458, https://doi.org/10.1175/JHM-D-13-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, https://doi.org/10.1029/96WR00270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2017: Hurricane Matthew. National Hurricane Center, 96 pp., https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf.

  • Stewart, S. R., and R. Berg, 2019: Hurricane Florence. National Hurricane Center, 98 pp., https://www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf.

  • Tan, J., W. A. Petersen, P.-E. Kirstetter, and Y. Tian, 2017: Performance of IMERG as a function of spatiotemporal scale. J. Hydrometeor., 18, 307319, https://doi.org/10.1175/JHM-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., Y. Tian, and X. Lin, 2014: Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. Atmospheres, 119, 45464567, https://doi.org/10.1002/2013JD020933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., R. Li, J. He, H. Wang, X. Fan, and S. Yao, 2020: Comparative evaluation of the GPM IMERG early, late, and final hourly precipitation products using the CMPA data over Sichuan Basin of China. Water, 12, 554, https://doi.org/10.3390/w12020554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2015: Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci., 8, 527529, https://doi.org/10.1038/ngeo2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, S., 2016: Sensitivity of model verification results to object identification parameters using method for object-based diagnostic evaluation–Time domain. NCAR/UCAR, 26 pp., https://n2t.net/ark:/85065/d7xw4mh5.

  • Wen, Y., A. Behrangi, H. Chen, and B. Lambrigtsen, 2018: How well were the early 2017 California Atmospheric River precipitation events captured by satellite products and ground-based radars? Quart. J. Roy. Meteor. Soc., 144, 344359, https://doi.org/10.1002/qj.3253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, https://doi.org/10.1175/JHM-D-11-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2015: Convective intensity, vertical precipitation structures, and microphysics of two contrasting convective regimes during the 2008 TiMREX. J. Geophys. Res. Atmos., 120, 40004016, https://doi.org/10.1002/2014JD022927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, C. B., A. A. Bradley, W. F. Krajewski, A. Kruger, and M. L. Morrissey, 2000: Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting. J. Hydrometeor, 1, 241254, https://doi.org/10.1175/1525-7541(2000)001<0241:ENMPEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zan, B., Y. Yu, J. Li, G. Zhao, T. Zhang, and J. Ge, 2019: Solving the storm split-merge problem—A combined storm identification, tracking algorithm. Atmos. Res., 218, 335346, https://doi.org/10.1016/j.atmosres.2018.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, A., L. Xiao, C. Min, S. Chen, M. Kulie, C. Huang, and Z. Liang, 2019: Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmos. Res., 216, 7685, https://doi.org/10.1016/j.atmosres.2018.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L.-F. Lin, and R. L. Bras, 2018: Evaluation of the quality of precipitation products: A case study using WRF and IMERG data over the central United States. J. Hydrometeor., 19, 20072020, https://doi.org/10.1175/JHM-D-18-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., E. Anagnostou, and C. Schwartz, 2018: NWP-based adjustment of IMERG precipitation for flood-inducing complex terrain storms: Evaluation over CONUS. Remote Sens., 10, 642, https://doi.org/10.3390/rs10040642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zick, S. E., and C. J. Matyas, 2016: A shape metric methodology for studying the evolving geometries of synoptic-scale precipitation patterns in tropical cyclones. Ann. Amer. Assoc. Geogr., 106, 12171235, https://doi.org/10.1080/24694452.2016.1206460.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 256 256 56
Full Text Views 51 51 8
PDF Downloads 75 75 14

Are Storm Characteristics the Same When Viewed Using Merged Surface Radars or a Merged Satellite Product?

View More View Less
  • 1 Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
  • 2 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • 3 Department of Geosciences. The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

High-resolution datasets offer the potential to improve our understanding of spatial and temporal precipitation patterns and storm structures. The goal of this study is to evaluate the similarities and differences of object-based storm characteristics as observed using space- or land-based sensors. The Method of Object-based Diagnostic Evaluation (MODE) Time Domain (MTD) is used to identify and track storm objects in two high-resolution merged datasets: the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) final product V06B and gauge-corrected ground-radar-based Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimations. Characteristics associated with landfalling hurricanes were also examined as a separate category of storm. The results reveal that IMERG and MRMS agree reasonably well across many object-based storm characteristics. However, there are some discrepancies that are statistically significant. MRMS storms are more concentrated, with smaller areas and higher peak intensities, which implies higher flash flood risks associated with the storms. On the other hand, IMERG storms can travel longer distances with a higher volume of precipitation, which implies higher risk of riverine flooding. Agreement between the datasets is higher for faster-moving hurricanes in terms of the averaged intensity. Finally, MRMS indicates a higher average precipitation intensity during the hurricane’s lifetime. However, in non-hurricanes, the opposite result was observed. This is likely related to MRMS having higher resolution; monitoring the hurricanes from many viewing angles, leading to different signal saturation properties compared to IMERG; and/or the dominance of droplet aggregation effects over evaporation effects at lower altitudes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0187.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Hooman Ayat, h.ayat@student.unsw.edu.au

Abstract

High-resolution datasets offer the potential to improve our understanding of spatial and temporal precipitation patterns and storm structures. The goal of this study is to evaluate the similarities and differences of object-based storm characteristics as observed using space- or land-based sensors. The Method of Object-based Diagnostic Evaluation (MODE) Time Domain (MTD) is used to identify and track storm objects in two high-resolution merged datasets: the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) final product V06B and gauge-corrected ground-radar-based Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimations. Characteristics associated with landfalling hurricanes were also examined as a separate category of storm. The results reveal that IMERG and MRMS agree reasonably well across many object-based storm characteristics. However, there are some discrepancies that are statistically significant. MRMS storms are more concentrated, with smaller areas and higher peak intensities, which implies higher flash flood risks associated with the storms. On the other hand, IMERG storms can travel longer distances with a higher volume of precipitation, which implies higher risk of riverine flooding. Agreement between the datasets is higher for faster-moving hurricanes in terms of the averaged intensity. Finally, MRMS indicates a higher average precipitation intensity during the hurricane’s lifetime. However, in non-hurricanes, the opposite result was observed. This is likely related to MRMS having higher resolution; monitoring the hurricanes from many viewing angles, leading to different signal saturation properties compared to IMERG; and/or the dominance of droplet aggregation effects over evaporation effects at lower altitudes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0187.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Hooman Ayat, h.ayat@student.unsw.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 1.30 MB)
Save