• Andersen, T. K., and J. M. Shepherd, 2013: A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. Int. J. Climatol., 34, 391402, https://doi.org/10.1002/joc.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, T. K., D. E. Radcliffe, and J. M. Shepherd, 2013: Quantifying surface energy fluxes in the vicinity of inland-tracking tropical cyclones. J. Appl. Meteor. Climatol., 52, 27972808, https://doi.org/10.1175/JAMC-D-13-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arndt, D. S., J. B. Basara, R. A. McPherson, B. G. Illston, G. D. Mcmanus, and D. B. Demko, 2009: Observations of the overland reintensification of Tropical Storm Erin (2007). Bull. Amer. Meteor. Soc., 90, 10791094, https://doi.org/10.1175/2009BAMS2644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and K. C. Crawford, 2002: Linear relationships between root-zone soil moisture and atmospheric processes in the planetary boundary layer. J. Geophys., 107, 4274, https://doi.org/10.1029/2001JD000633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2015: National Hurricane Center tropical cyclone report: Tropical Storm Bill (AL022015). NOAA, 31 pp., https://www.nhc.noaa.gov/data/tcr/AL022015_Bill.pdf.

  • Bozeman, M. L., D. Niyogi, S. Gopalakrishnan, F. D. Marks, X. Zhang, and V. Tallapragada, 2011: An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Nat. Hazards, 63, 15431571, https://doi.org/10.1007/s11069-011-9841-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, C., B. Rajagopalan, M. Alexander, and S. Gangopadhyay, 2015: Spatial variability of seasonal extreme precipitation in the western United States. J. Geophys. Res.: Atmos., 120, 45224533, https://doi.org/10.1002/2015JD023205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branch, O., and V. Wulfmeyer, 2019: Deliberate enhancement of rainfall using desert plantations. Proc. Natl. Acad. Sci. USA, 116, 18 84118 847, https://doi.org/10.1073/pnas.1904754116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brauer, N. S., J. B. Basara, P. E. Kirstetter, R. A. Wakefield, C. R. Homeyer, J. Yoo, J. M. Shepherd, and J. A. Santanello Jr., 2021: The inland maintenance and reintensification of Tropical Storm Bill (2015). Part II: Precipitation microphysics. J. Hydrometeor., 22, 26952711, https://doi.org/10.1175/JHM-D-20-0151.1.

    • Search Google Scholar
    • Export Citation
  • Chang, H.-I., D. Niyogi, A. Kumar, C. M. Kishtawal, J. Dudhia, F. Chen, U. C. Mohanty, and M. Shepherd, 2009: Possible relation between land surface feedback and the post-landfall structure of monsoon depressions. Geophys. Res. Lett., 36, L15826, https://doi.org/10.1029/2009GL037781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dastoor, A., and T. N. Krishnamurti, 1991: The landfall and structure of a tropical cyclone, The sensitivity of model predictions to soil moisture parameterizations. Bound.-Layer Meteor., 55, 345380, https://doi.org/10.1007/BF00119809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2006: The hydrologic feedback pathway for land-climate coupling. J. Hydrometeor., 7, 857867, https://doi.org/10.1175/JHM526.1.

  • Edwards, R., 2010: Tropical cyclone tornado records for the modernized National Weather Service era. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P2.7, https://ams.confex.com/ams/25SLS/techprogram/paper_175269.htm.

  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872, https://doi.org/10.1175/2008MWR2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 86511 877, https://doi.org/10.1029/2000JD900051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., J. J. Gourley, and J. B. Basara, 2019a: Diagnosing moisture sources for flash floods in the United States. Part I: Kinematic trajectories. J. Hydrometeor., 20, 14951509, https://doi.org/10.1175/JHM-D-18-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., J. J. Gourley, and J. B. Basara, 2019b: Diagnosing moisture sources for flash floods in the United States. Part II: Terrestrial and oceanic sources of moisture. J. Hydrometeor., 20, 15111531, https://doi.org/10.1175/JHM-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., R. S. Schumacher, and T. J. Galarneau, 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 38483870, https://doi.org/10.1175/2011MWR3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, K., R. Kawamura, H. Hirata, T. Kawano, M. Kato, and T. Shinoda, 2017: A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J. Geophys. Res. Atmos., 122, 12 50212 521, https://doi.org/10.1002/2017JD027557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, M., D. Rayner, and D. Chen, 2010: Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus, 62A, 605616, https://doi.org/10.1111/j.1600-0870.2010.00456.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jana, S., B. Rajagopalan, M. A. Alexander, and A. J. Ray, 2018: Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos., 123, 48504870, https://doi.org/10.1029/2017JD027652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kellner, O., D. Niyogi, M. Lei, and A. Kumar, 2012: The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007). Nat. Hazards, 63, 15731600, https://doi.org/10.1007/s11069-011-9966-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishtawal, C. M., D. Niyogi, A. Kumar, M. L. Bozeman, and O. Kellner, 2011: Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Nat. Hazards, 63, 15271542, https://doi.org/10.1007/s11069-011-0015-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishtawal, C. M., D. Niyogi, B. Rajagopalan, M. Rajeevan, N. Jaiswal, and U. C. Mohanty, 2013: Enhancement of inland penetration of monsoon depressions in the Bay of Bengal due to prestorm ground wetness. Water Resour. Res., 49, 35893600, https://doi.org/10.1002/wrcr.20301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Läderach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., and R. Edwards, 2010: The redevelopment of a warm core structure in Erin: A case of inland tropical storm formation. Electron. J. Severe Storms Meteor., 5, 118.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., and Coauthors, 2019: Influence of land cover and soil moisture based brown ocean effect on an extreme rainfall event from a Louisiana Gulf Coast tropical system. Sci. Rep., 9, 17136, https://doi.org/10.1038/s41598-019-53031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1988: The 1988 summer drought over the Great Plains: A classic example of air-sea-land interaction. Trans. Amer. Geophys. Union, 69, 1067.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., C. Kishtawal, S. Tripathi, and R. S. Govindaraju, 2010: Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resour. Res., 46, W03533, https://doi.org/10.1029/2008WR007082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubin-Oster, B., 2015: Tropical Depression Bill advisory number 18. Weather Prediction Center, https://www.wpc.ncep.noaa.gov/tropical/tropical_advisories.php?storm=BILL&adnum=18&dt=2015062009&status=td.

  • Santanello, J. A., J. Roundy, and P. A. Dirmeyer, 2015: Quantifying the land–atmosphere coupling behavior in modern reanalysis products over the U.S. Southern Great Plains. J. Climate, 28, 58135829, https://doi.org/10.1175/JCLI-D-14-00680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, W., I. Ginis, and R. E. Tuleya, 2002: A numerical investigation of land surface water on landfalling hurricanes. J. Atmos. Sci., 59, 789802, https://doi.org/10.1175/1520-0469(2002)059<0789:ANIOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2016: National Hurricane Center annual summary: 2015 Atlantic hurricane season. NHC Tech. Rep., 16 pp., https://www.nhc.noaa.gov/data/tcr/summary_atlc_2015.pdf.

  • Tawfik, A. B., and P. A. Dirmeyer, 2014: A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett., 41, 173178, https://doi.org/10.1002/2013GL057984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291304, https://doi.org/10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1978: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35, 242257, https://doi.org/10.1175/1520-0469(1978)035<0242:ANSOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Huang, and X. Cui, 2018: Impact of mid- and upper-level dry air on tropical cyclone genesis and intensification: A modeling study of Durian (2001). Adv. Atmos. Sci., 35, 15051521, https://doi.org/10.1007/s00376-018-8039-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., H. Su, and Z.-L. Yang, 2016: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467481, https://doi.org/10.1007/s00382-015-2593-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wu, J., and P. A. Dirmeyer, 2020: Drought demise attribution over CONUS. J. Geophys. Res. Atmos., 125, e2019JD031255, https://doi.org/10.1029/2019JD031255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17, 27522764, https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yosef, G., R. Walko, R. Avisar, F. Tatarinov, E. Rotenberg, and D. Yakir, 2018: Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep., 8, 996, https://doi.org/10.1038/s41598-018-19265-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Pu, and C. Wang, 2019: Impacts of soil moisture on the numerical simulation of a post-landfall storm. J. Meteor. Res., 33, 206218, https://doi.org/10.1007/s13351-019-8002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Z. Pu, and C. Wang, 2020: Land-surface diurnal effects on the asymmetric structures of a postlandfall tropical storm. J. Geophys. Res. Atmos., 126, e2020JD033842, https://doi.org/10.1029/2020JD033842.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: Urbanization exacerbated the rainfall and flooding caused by Hurricane Harvey in Houston. Nature, 563, 384388, https://doi.org/10.1038/s41586-018-0676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 194 194 55
Full Text Views 66 66 21
PDF Downloads 76 76 26

The Inland Maintenance and Reintensification of Tropical Storm Bill (2015). Part I: Contributions of the Brown Ocean Effect

View More View Less
  • 1 a School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 b School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
  • | 3 c Program in Atmospheric Sciences, Department of Geography, University of Georgia, Athens, Georgia
  • | 4 d Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 5 e NWS Storm Prediction Center, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “brown ocean effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the brown ocean effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were nonnegligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p < 0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Wakefield’s current affiliations: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, and NOAA/Global Systems Laboratory, Boulder, Colorado.

Corresponding author: Ryann A. Wakefield, ryann.wakefield@noaa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0151.1.

Abstract

Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “brown ocean effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the brown ocean effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were nonnegligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p < 0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Wakefield’s current affiliations: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, and NOAA/Global Systems Laboratory, Boulder, Colorado.

Corresponding author: Ryann A. Wakefield, ryann.wakefield@noaa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0151.1.

Save