• Andersen, T. K., and J. M. Shepherd, 2014: A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. Int. J. Climatol., 34, 391402, https://doi.org/10.1002/joc.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arndt, D. S., J. B. Basara, R. A. McPherson, B. G. Illston, G. D. McManus, and D. B. Demko, 2009: Observations of the overland reintensification of Tropical Storm Erin (2007). Bull. Amer. Meteor. Soc., 90, 10791094, https://doi.org/10.1175/2009BAMS2644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070, https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, R. Cremonini, and E. Gorgucci, 2008: Differential reflectivity calibration for operational radars. J. Atmos. Oceanic Technol., 25, 15421555, https://doi.org/10.1175/2008JTECHA1037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877, https://doi.org/10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and C. R. Homeyer, 2017: GridRad - Three-Dimensional Gridded NEXRAD WSR-88D Radar Data. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 9 October 2019, https://doi.org/10.5065/D6NK3CR7.

    • Crossref
    • Export Citation
  • Brauer, N. S., J. B. Basara, C. R. Homeyer, G. M. McFarquhar, and P. E. Kirstetter, 2020: Quantifying precipitation efficiency and drivers of excessive precipitation in post-landfall Hurricane Harvey. J. Hydrometeor., 21, 433452, https://doi.org/10.1175/JHM-D-19-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910917, https://doi.org/10.1002/2015GL067278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, N., P. E. Kirstetter, J. J. Gourley, and Y. Hong, 2017: Polarimetric signatures of midlatitude warm-rain precipitation events. J. Appl. Meteor. Climatol., 56, 697711, https://doi.org/10.1175/JAMC-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, https://doi.org/10.1175/2010JTECHA1488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and P. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 20292045, https://doi.org/10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. S., 2001: Flash flood forecast and detection methods. Severe Convective Storms, Meteor. Monogr., No. 50, 481526, https://doi.org/10.1175/0065-9401-28.50.481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., and M. M. Bell, 2020: A comparison of the polarimetric radar characteristics of heavy rainfall from Hurricanes Harvey (2017) and Florence (2018). J. Geophys. Res. Atmos., 125, e2019JD032 212, https://doi.org/10.1029/2019JD032212..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 45214541, https://doi.org/10.1175/MWR-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 45, 13 51313 522, https://doi.org/10.1029/2018GL080739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., C. A. Fiebrich, and B. G. Illston, 2017: Observing the May 2015 record rainfall at Norman, Oklahoma, using various methods. J. Hydrometeor., 18, 30433049, https://doi.org/10.1175/JHM-D-17-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872, https://doi.org/10.1175/2008MWR2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., R. S. Schumacher, and T. J. Galarneau, 2011: Sensitivity in the overland reintensification of tropical cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 38483870, https://doi.org/10.1175/2011MWR3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y.-C., and M. M. Bell, 2019: Microphysical characteristics of an asymmetric eyewall in major Hurricane Harvey (2017). Geophys. Res. Lett., 46, 461471, https://doi.org/10.1029/2018GL080770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1992: Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote Sens., 30, 853858, https://doi.org/10.1109/36.175319..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, https://doi.org/10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, H. M., J. Zhang, and K. L. Elmore, 2014: Automated identification of enhanced rainfall rates using the near-storm environment for radar precipitation estimates. J. Hydrometeor., 15, 12381254, https://doi.org/10.1175/JHM-D-13-042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W., I. Cluckie, and R. Griffith, 2006: Aspects of melting and the radar bright band. Meteor. Appl., 8, 371379, https://doi.org/10.1017/S1350482701003139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of region origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, D. R. MacGorman, M. R. Kumjian, and A. O. Fierro, 2014: An electrical and polarimetric analysis of the overland reintensification of Tropical Storm Erin (2007). Mon. Wea. Rev., 142, 23212344, https://doi.org/10.1175/MWR-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land– Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., Y. N. Takayabu, C. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, https://doi.org/10.1038/ncomms7213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://doi.org/10.21957/vf291hehd7.

    • Crossref
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651376, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2006: A potential vorticity view of synoptic development. Meteor. Appl., 4, 325334, https://doi.org/10.1017/S1350482797000716.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., and F. Chen, 2019: Precipitation microphysics of tropical cyclones over the western north pacific based on GPM DPR observations: A preliminary analysis. J. Geophys. Res. Atmos., 124, 31243142, https://doi.org/10.1029/2018JD029454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2018: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 127 pp., https://gpm.nasa.gov/sites/default/files/2019-05/ATBD_DPR_201811_with_Appendix3b.pdf.

  • Jameson, A. R., 1985: Microphysical interpretation of multiparameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations. J. Atmos. Sci., 42, 607614, https://doi.org/10.1175/1520-0469(1985)042<0607:MIOMRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarrell, J. D., M. Mayfield, E. N. Rappaport, and C. Landsea, 2001: The deadliest, costliest, and most intense United States hurricanes from 1900 to 2000. NOAA Tech. Memo. NWS TPC-3, 29 pp., https://www.nhc.noaa.gov/pdf/NWS-TPC-2001-3.pdf.

  • Jessup, S. M., and A. T. DeGaetano, 2008: A statistical comparison of the properties of flash flooding and nonflooding precipitation events in portions of New York and Pennsylvania. Wea. Forecasting, 23, 114130, https://doi.org/10.1175/2007WAF2006066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kellner, O., D. Niyogi, M. Lei, and A. Kumar, 2012: The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007). Nat. Hazards, 63, 15731600, https://doi.org/10.1007/s11069-011-9966-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., H. Andrieu, B. Boudevillain, and G. Delrieu, 2013: A physically based identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor. Climatol., 52, 16451663, https://doi.org/10.1175/JAMC-D-12-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the global land–atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39, 102116, https://doi.org/10.1109/36.898669..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Operat. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Operat. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 30523067, https://doi.org/10.1175/JAS-D-13-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and E. P. Lozowski, 1970: Pressure perturbations and buoyancy in convective clouds. J. Atmos. Sci., 27, 168170, https://doi.org/10.1175/1520-0469(1970)027<0168:PPABIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., W.-K. Tao, and P. J. Wetzel, 1998: A study of landscape-generated deep moist convection. Mon. Wea. Rev., 126, 928942, https://doi.org/10.1175/1520-0493(1998)126<0928:ASOLGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, R., S. Arms, P. Marsh, E. Bruning, and J. Leeman, 2017: MetPy: A Python package for meteorological data. Unidata, https://doi.org/10.5065/D6WW7G29.

    • Crossref
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, https://doi.org/10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medlin, J. M., S. K. Kimball, and K. G. Blackwell, 2007: Radar and rain gauge analysis of the extreme rainfall during Hurricane Danny’s (1997) landfall. Mon. Wea. Rev., 135, 18691888, https://doi.org/10.1175/MWR3368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohd Anip, M. H., and P. Market, 2007: Dominant factors influencing precipitation efficiency in a continental mid-latitude location. Tellus, 59A, 122126, https://doi.org/10.1111/j.1600-0870.2006.00208.x .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and R. K. Smith, 1994: The development of potential vorticity in a hurricane-like vortex. Quart. J. Roy. Meteor. Soc., 120, 12551265, https://doi.org/10.1002/qj.49712051907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 33663387, https://doi.org/10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteverdi, J., and R. Edwards, 2010: The redevelopment of a warm core structure in Erin: A case of inland tropical storm formation. Electron. J. Severe Storms Meteor., 5, 118.

    • Search Google Scholar
    • Export Citation
  • Nair, U., and Coauthors, 2019: Influence of land cover and soil moisture based brown ocean effect on an extreme rainfall event from a Louisiana Gulf Coast tropical system. Sci. Rep., 9, 17136, https://doi.org/10.1038/s41598-019-53031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NHC, JTWC, RDA, BoM, and SAIC, 1993: Global Tropical Cyclone “Best Track” Position and Intensity Data. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 10 December 2019, http://rda.ucar.edu/datasets/ds824.1/.

  • NOAA/NWS/Radar Operations Center, 1991: NOAA Next Generation Radar (NEXRAD) level 2 base data. NOAA/National Centers for Environmental Information, accessed 9 October 2019, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • Porcacchia, L., P.-E. Kirstetter, V. Maggioni, and S. Tanelli, 2019: Investigating the GPM dual-frequency precipitation radar signatures of low-level precipitation enhancement. Quart. J. Roy. Meteor. Soc., 145, 31613174, https://doi.org/10.1002/qj.3611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, A., J. Basara, J. M. Shepherd, and S. Nelson, 2016: Insights into atmospheric contributors to urban flash flooding across the United States using an analysis of Rawinsonde data and associated calculated parameters. J. Appl. Meteor. Climatol., 55, 313323, https://doi.org/10.1175/JAMC-D-14-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275, https://doi.org/10.1029/RS013i002p00271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., P.-E. Kirstetter, and T. L’Ecuyer, 2017: How frequent is precipitation over the contiguous United States? Perspectives from ground-based and spaceborne radars. J. Hydrometeor., 18, 16571672, https://doi.org/10.1175/JHM-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1956: The micro-structure of cumuli in maritime and continental air. Tellus, 8, 443444, https://doi.org/10.3402/tellusa.v8i4.9040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. Fasullo, 2007: Water and energy budgets of hurricanes and implications for climate change. J. Geophys. Res., 112, D23107, https://doi.org/10.1029/2006JD008304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C., and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 17771791, https://doi.org/10.1175/2007JAMC1649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitale, J., and T. Ryan, 2013: Operational recognition of high precipitation efficiency and low-echo-centroid convection. J. Operat. Meteor., 1, 128143, https://doi.org/10.15191/nwajom.2013.0112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakefield, R. A., J. B. Basara, J. M. Shepherd, Noah Brauer, J. C. Furtado, J. A. Santanello Jr., and R. Edwards, 2021: The inland maintenance and reintensification of Tropical Storm Bill (2015). Part I: Contributions of the brown ocean effect. J. Hydrometeor., 22, 26752693, https://doi.org/10.1175/JHM-D-20-0150.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, https://doi.org/10.1175/2009JTECHA1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., H. Su, and Z.-L. Yang, 2016: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467481, https://doi.org/10.1007/s00382-015-2593-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., K. Howard, and J. Zhang, 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902, https://doi.org/10.1175/2007JHM954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, J., J. A. Santanello, M. Shepherd, S. Kumar, P. Lawston, and A. M. Thomas, 2020: Quantification of the land surface and brown ocean influence on tropical cyclone intensification over land. J. Hydrometeor., 21, 11711192, https://doi.org/10.1175/JHM-D-19-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., D. Zrnić, and A. Ryzhkov, 2013: Partial beam blockage correction using polarimetric radar measurements. J. Atmos. Oceanic Technol., 30, 861872, https://doi.org/10.1175/JTECH-D-12-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464, https://doi.org/10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 248 248 49
Full Text Views 87 87 20
PDF Downloads 86 86 15

The Inland Maintenance and Reintensification of Tropical Storm Bill (2015). Part II: Precipitation Microphysics

View More View Less
  • 1 a Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 2 b School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 c School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
  • | 4 d NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 5 e ESSIC, University of Maryland, College Park, College Park, Maryland
  • | 6 f NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 7 g Department of Geography, The University of Georgia, Athens, Georgia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical Storm Bill produced over 400 mm of rainfall in portions of southern Oklahoma from 16 to 20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes, which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as ZH, ZDR, KDP, and ρhv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision–coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision–coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Noah S. Brauer, nbrauer@ou.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0150.1.

Abstract

Tropical Storm Bill produced over 400 mm of rainfall in portions of southern Oklahoma from 16 to 20 June 2015, adding to the catastrophic urban and river flooding that occurred throughout the region in the month prior to landfall. The unprecedented excessive precipitation event that occurred across Oklahoma and Texas during May and June 2015 resulted in anomalously high soil moisture and latent heat fluxes over the region, acting to increase the available boundary layer moisture. Tropical Storm Bill progressed inland over the region of anomalous soil moisture and latent heat fluxes, which helped maintain polarimetric radar signatures associated with tropical, warm rain events. Vertical profiles of polarimetric radar variables such as ZH, ZDR, KDP, and ρhv were analyzed in time and space over Texas and Oklahoma. The profiles suggest that Tropical Storm Bill maintained warm rain signatures and collision–coalescence processes as it tracked hundreds of kilometers inland away from the landfall point consistent with tropical cyclone precipitation characteristics. Dual-frequency precipitation radar observations from the NASA GPM DPR were also analyzed post-landfall and showed similar signatures of collision–coalescence while Bill moved over north Texas, southern Oklahoma, eastern Missouri, and western Kentucky.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Noah S. Brauer, nbrauer@ou.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-20-0150.1.

Save