• Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, https://doi.org/10.1175/2009JCLI2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blasch, K., T. P. Ferré, J. Hoffmann, D. Poll, M. Baily, and J. Cordova, 2004: Processes controlling recharge beneath ephemeral streams in Southern Arizona. Groundwater Recharge in a Desert Environment: The Southwestern United States, J. F. Hogan, F. M. Phillips and B. R. Scanlon, Eds., Amer. Geophys. Union, 69–76.

    • Crossref
    • Export Citation
  • Blöschl, G., C. Reszler, and J. Komma, 2008: A spatially distributed flash flood forecasting model. Environ. Modell. Software, 23, 464478, https://doi.org/10.1016/j.envsoft.2007.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P., P. A. Troch, M. Schaffner, C. Unkrich, and D. Goodrich, 2014: An all-season flash flood forecasting system for real-time operations. Bull. Amer. Meteor. Soc., 95, 399407, https://doi.org/10.1175/BAMS-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, J. O. Adegoke, S. D. Schubert, and P. J. Pegion, 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887, https://doi.org/10.1175/JCLI4212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, https://doi.org/10.1029/WR020i006p00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunge, J. A., 1969: On the subject of a flood propagation computation method (Muskingum method). J. Hydraul. Res., 7, 205230, https://doi.org/10.1080/00221686909500264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., J. Mai, L. Samaniego, M. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooge, J. C. I., 1986: Looking for hydrologic laws. Water Resour. Res., 22, 46S58S, https://doi.org/10.1029/WR022i09Sp0046S.

  • Duan, Q., and Coauthors, 2006: Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 317, https://doi.org/10.1016/j.jhydrol.2005.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falcone, J., 2011: GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow. USGS, accessed 6 October 2021, http://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml.

  • Feng, X., and Coauthors, 2019: Calibrating the National Water Model V2.1 over the contiguous United States. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H43I-2134, https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/525728.

  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American monsoon experiment. Mon. Wea. Rev., 138, 35403555, https://doi.org/10.1175/2010MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and Coauthors, 2020: The WRF-Hydro modeling system technical description, version 5.1.1. NCAR Tech. Note, 107 pp., https://ral.ucar.edu/sites/default/files/public/WRFHydroV511TechnicalDescription.pdf.

  • Goodrich, D. C., D. G. Williams, C. L. Unkrich, R. L. Scott, K. R. Hultine, D. Pool, A. Coes, and J. Hogan, 2003: Multiple approaches to estimate ephemeral channel recharge. Proc. First Interagency Conf. on Research in the Watersheds, Tucson, AZ, U.S. Department of Agriculture, 118–124, http://www.tucson.ars.ag.gov/icrw/Proceedings/Goodrich.pdf.

  • Goodrich, D. C., and Coauthors, 2004: Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch San Pedro River Basin, Arizona. Groundwater Recharge in a Desert Environment: The Southwestern United States, J. F. Hogan, F. M. Phillips and B. R. Scanlon, Eds., Amer. Geophys. Union, 77–99.

    • Crossref
    • Export Citation
  • Goodrich, D. C., and Coauthors, 2012: KINEROS2/AGWA: Model use, calibration, and validation. Trans. ASABE, 55, 15611574, https://doi.org/10.13031/2013.42264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Y. Hong, Z. L. Flamig, J. H. Wang, H. Vergara, and E. N. Anagnostou, 2011: Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb basin, Oklahoma. J. Hydrometeor., 12, 973988, https://doi.org/10.1175/2011JHM1287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., T. Wagener, and Y. Liu, 2008: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Processes, 22, 38023813, https://doi.org/10.1002/hyp.6989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. Yilmaz, and G. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J., J. J. Gourley, P.-E. Kirstetter, Y. Hong, F. Kong, and Z. L. Flamig, 2016: A method for probabilistic flash flood forecasting. J. Hydrol., 541, 480494, https://doi.org/10.1016/j.jhydrol.2016.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, P., X. Yuan, and X.-Z. Liang, 2017: Do lateral flows matter for the hyperresolution land surface modeling? J. Geophys. Res. Atmos., 122, 12 07712 092, https://doi.org/10.1002/2017JD027366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavetski, D., S. W. Franks, and G. Kuczera, 2003: Confronting input uncertainty in environmental modelling. Calibration of Watershed Models, Q. Duan et al., Eds., Water Science and Applications, Vol. 6, Amer. Geophys. Union, 49–68.

    • Crossref
    • Export Citation
  • Kim, J., and B. P. Mohanty, 2016: Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling. J. Geophys. Res. Atmos., 121, 704721, https://doi.org/10.1002/2015JD024067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., Z. Zhang, W. Wu, N. Patrick, and X. Tan, 2018a: Analysis of Record for Calibration (AORC). Internal Rep. to Office of Water Prediction, 43 pp., https://hydrology.nws.noaa.gov/aorc-historic/Documents/AORC_Deep-Dive_201808_v3.pdf.

  • Kitzmiller, D., W. Wu, Z. Zhang, N. Patrick, and X. Tan, 2018b: The Analysis of Record for Calibration: A high-resolution precipitation and surface weather dataset for the United States. 2018 Fall Meeting, Washington, DC, Amer. Geophys. Union, Abstract H41H-06.

  • Kumar, R., B. Livneh, and L. Samaniego, 2013: Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resour. Res., 49, 57005714, https://doi.org/10.1002/wrcr.20431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, https://doi.org/10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., H. V. Gupta, C. L. Castro, D. J. Gochis, D. N. Yates, A. L. Dugger, D. C. Goodrich, and P. Hazenberg, 2019: Enhancing the structure of the WRF-Hydro hydrologic model for semi-arid environments. J. Hydrometeor., 20, 691714, https://doi.org/10.1175/JHM-D-18-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, and P. Hazenberg, 2020: Effects of lateral flow on the convective environment in a coupled hydrometeorological modeling system in a semiarid environment. J. Hydrometeor., 21, 615642, https://doi.org/10.1175/JHM-D-19-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Looper, J. P., and B. E. Vieux, 2012: An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. J. Hydrol., 412–413, 114132, https://doi.org/10.1016/j.jhydrol.2011.05.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., C. L. Castro, H. Chang, T. Lahmers, D. K. Adams, and C. A. Ochoa-Moya, 2017: The more extreme nature of North American monsoon precipitation in the Southwestern United States as revealed by a historical climatology of simulated severe weather events. J. Appl. Meteor. Climatol., 56, 25092529, https://doi.org/10.1175/JAMC-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • McKay, L., T. Bondelid, T. Dewald, J. Johnston, R. Moore, and A. Rea, 2019: NHDPlus Version 2.1: User Guide. U.S. EPA, 182 pp., ftp://ftp.horizon-systems.com/nhdplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf.

  • Mendoza, P. A., M. P. Clark, M. Barlage, B. Rajagopalan, L. Samaniego, G. Abramowitz, and H. Gupta, 2015: Are we unnecessarily constraining the agility of complex process-based models? Water Resour. Res., 51, 716728, https://doi.org/10.1002/2014WR015820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrological modeling. Earth Interact., 2, https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizukami, N., M. P. Clark, A. J. Newman, A. W. Wood, E. D. Gutmann, B. Nijssen, O. Rakovec, and L. Samaniego, 2017: Towards seamless large-domain parameter estimation for hydrologic models. Water Resour. Res., 53, 80208040, https://doi.org/10.1002/2017WR020401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2014: United States Flood Loss Report - Water Year 2014. 6 pp., https://www.weather.gov/media/water/WY14%20Flood%20Loss%20Summary.pdf.

  • Newman, A., and R. H. Johnson, 2012: Mechanisms for precipitation enhancement in a North American monsoon upper-tropospheric trough. J. Atmos. Sci., 69, 17751792, https://doi.org/10.1175/JAS-D-11-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omernik, J. M., 1987: Ecoregions of the conterminous United States. Ann. Assoc. Amer. Geogr., 77, 118125, https://doi.org/10.1111/j.1467-8306.1987.tb00149.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omernik, J. M., and G. E. Griffith, 2014: Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manage., 54, 12491266, https://doi.org/10.1007/s00267-014-0364-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, P., K. K. Yilmaz, and H. V. Gupta, 2012: Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures. J. Hydrol., 418–419, 4960, https://doi.org/10.1016/j.jhydrol.2008.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges: Convection-permitting climate modeling. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytlak, E., M. Goering, and A. Bennett, 2005: Upper-tropospheric troughs and their interaction with the North American monsoon. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3, https://ams.confex.com/ams/pdfpapers/85393.pdf.

  • Rasmussen, R., and Coauthors, 2014: Climate Change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, https://doi.org/10.1016/j.jhydrol.2007.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., R. Kumar, and S. Attinger, 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. L. Castro, and E. Ritchie, 2014: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, https://doi.org/10.1002/joc.4104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A comparison of precipitation occurrence from the NCEP Stage IV QPE product and the CloudSat Cloud Profiling Radar. J. Hydrometeor., 15, 444458, https://doi.org/10.1175/JHM-D-13-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M., and H. V. Gupta, 2012: The Distributed Model Intercomparison Project (DMIP) – Phase 2 experiments in the Oklahoma Region, USA. J. Hydrol., 418–419, 12, https://doi.org/10.1016/j.jhydrol.2011.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M., and Coauthors, 2012: Results of the DMIP 2 Oklahoma experiments. J. Hydrol., 418–419, 1748, https://doi.org/10.1016/j.jhydrol.2011.08.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolson, B. A., and C. A. Shoemaker, 2007: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res., 43, W01413, https://doi.org/10.1029/2005WR004723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolhiser, D. A., R. E. Smith, and D. C. Goodrich, 1990: KINEROS, a kinematic runoff and erosion manual: Documentation and user manual. Doc. ARS-77, U.S. Department of Agriculture, 130 pp., https://naldc.nal.usda.gov/download/47330/PDF.

  • Yatheendradas, S., T. Wagener, H. Gupta, C. Unkrich, D. Goodrich, M. Schaffner, and A. Stewart, 2008: Understanding uncertainty in distributed flash flood forecasting for semiarid regions. Water Resour. Res., 44, W05S19, https://doi.org/10.1029/2007WR005940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., E. P. Clark, E. Rogers, M. B. Ek, and T. M. Lahmers, 2014: An examination of meteorological and soil moisture conditions in the Babocomari River Basin before the flood event of 2008. J. Hydrometeor., 15, 243260, https://doi.org/10.1175/JHM-D-12-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., E. Serpetzoglou, E. N. Anagnostou, E. I. Nikolopoulos, and A. Papadopoulos, 2012: Improving the representation of river–groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model. J. Hydrol., 420–421, 7286, https://doi.org/10.1016/j.jhydrol.2011.11.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 394 394 33
Full Text Views 123 123 10
PDF Downloads 145 145 8

Evaluation of NOAA National Water Model Parameter Calibration in Semiarid Environments Prone to Channel Infiltration

View More View Less
  • 1 a NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 b NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 c Deltares, Delft, Netherlands
  • | 4 d Department of Hydrology Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • | 5 e National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The NOAA National Water Model (NWM), maintained and executed by the NOAA National Weather Service (NWS) Office of Water Prediction, provides operational hydrological guidance throughout the contiguous United States. Based on the WRF-Hydro model architecture developed by the National Center for Atmospheric Research (NCAR), the NWM was recently modified for semiarid domains, by permitting it to explicitly resolve infiltration from ephemeral channels into the underlying channel bed as an added model sink term. To analyze the added value of channel infiltration in semiarid environments, we calibrated NWM v2.1 (with the channel infiltration function) to 56 independent basins in the western CONUS, following identical calibration methods as the preoperational NWM v2.1 (not including channel infiltration). Calibration of the model consists of two parts, including 1) calibration of channel infiltration only with other parameters set to the calibrated parameters used for preoperational NWM v2.1 and 2) calibration of all parameters including channel infiltration with settings otherwise equivalent to the calibration of NWM v2.1. The calibrated channel-infiltration enhanced NWM improves predictive skill compared to the control NWM in 85% of evaluated basins, for the calibration period. The current NWM settings for physical processes and the biases of the calibration scheme limit model performance in semiarid environments. To explore whether channel infiltration paired with an alternative calibration scheme could address these limitations, NWM v2.1 was calibrated with a new objective function in selected basins. We found that this updated objective function could ameliorate model biases in some semiarid environments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Lahmers, timothy.lahmers@nasa.gov

Abstract

The NOAA National Water Model (NWM), maintained and executed by the NOAA National Weather Service (NWS) Office of Water Prediction, provides operational hydrological guidance throughout the contiguous United States. Based on the WRF-Hydro model architecture developed by the National Center for Atmospheric Research (NCAR), the NWM was recently modified for semiarid domains, by permitting it to explicitly resolve infiltration from ephemeral channels into the underlying channel bed as an added model sink term. To analyze the added value of channel infiltration in semiarid environments, we calibrated NWM v2.1 (with the channel infiltration function) to 56 independent basins in the western CONUS, following identical calibration methods as the preoperational NWM v2.1 (not including channel infiltration). Calibration of the model consists of two parts, including 1) calibration of channel infiltration only with other parameters set to the calibrated parameters used for preoperational NWM v2.1 and 2) calibration of all parameters including channel infiltration with settings otherwise equivalent to the calibration of NWM v2.1. The calibrated channel-infiltration enhanced NWM improves predictive skill compared to the control NWM in 85% of evaluated basins, for the calibration period. The current NWM settings for physical processes and the biases of the calibration scheme limit model performance in semiarid environments. To explore whether channel infiltration paired with an alternative calibration scheme could address these limitations, NWM v2.1 was calibrated with a new objective function in selected basins. We found that this updated objective function could ameliorate model biases in some semiarid environments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Lahmers, timothy.lahmers@nasa.gov
Save