• Adhikari, A., C. Liu, and M. S. Kulie, 2018: Global distribution of snow precipitation features and their properties from 3 years of GPM observations. J. Climate, 31, 37313754, https://doi.org/10.1175/JCLI-D-17-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and D. P. Lettenmaier, 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265284, https://doi.org/10.1029/94RG00625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., M. Joshi, J. Putonen, and D. W. Burbank, 2000: A study of the 1999 monsoon rainfall in a mountainous region in the central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27, 36833686, https://doi.org/10.1029/2000GL011827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Coauthors, 2006: From weather to climate – Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Tectonics, Climate, and Landscape Evolution, S. Willett et al., Eds., GSA Special Papers, Vol. 398, Geological Society of America, 17–38, https://doi.org/10.1130/S2006.2398(02).

    • Crossref
    • Export Citation
  • Behrangi, A., K. Andreadis, J. B. Fisher, F. J. Turk, S. Granger, T. Painter, and N. Das, 2014: Satellite-based precipitation estimation and its application for streamflow prediction over mountainous western U.S. basins. J. Appl. Meteor. Climatol., 53, 28232842, https://doi.org/10.1175/JAMC-D-14-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolch, T., and Coauthors, 2012: The state and fate of Himalayan glaciers. Science, 336, 310314, https://doi.org/10.1126/science.1215828.

  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalaya hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., G. Panegrossi, P. Sanò, A. C. Marra, S. Dietrich, B. T. Johnson, and M. S. Kulie, 2017: Evaluation of the GPM DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res., 197, 6475, https://doi.org/10.1016/j.atmosres.2017.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., and Coauthors, 2011: Glossary of glacier mass balance and related terms. IHP-VII Tech. Doc. in Hydrology 86, IACS Contribution 2, UNESCO-IHP, 114 pp., https://wgms.ch/downloads/Cogley_etal_2011.pdf.

  • Cronk, H., and P. Partain, 2017: CloudSat ECMWF-AUX auxiliary data product process description and interface control document, product version: P_R05. NASA Doc., 15 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/ECMWF-AUX_PDICD.P_R05.rev0_.pdf.

  • Deng, H., N. C. Pepin, and Y. Chen, 2017: Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos., 122, 73237341, https://doi.org/10.1002/2017JD026524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2016: Evaluation of ShARP passive rainfall retrievals over snow-covered land surfaces and coastal zones. J. Hydrometeor., 17, 10131029, https://doi.org/10.1175/JHM-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, https://doi.org/10.1109/TGRS.2012.2199121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., and Coauthors, 2018: Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Climate Dyn., 51, 19711989, https://doi.org/10.1007/s00382-017-3992-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., 2008: Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276, 1419, https://doi.org/10.1016/j.epsl.2008.08.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. S. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-Satellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Z. Haddad, 2020: Introduction to radar rain retrieval methods. Satellite Precipitation Measurement, Vol. 1, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 169–182.

    • Crossref
    • Export Citation
  • Iguchi, T., and Coauthors, 2018: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 127 pp., https://gpm.nasa.gov/sites/default/files/2019-05/ATBD_DPR_201811_with_Appendix3b.pdf.

  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., and P. Xie, 2011: Kalman filter-based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Kääb, A., E. Berthier, C. Nuth, J. Gardelle, and Y. Arnaud, 2012: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498, https://doi.org/10.1038/nature11324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2020: Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. Satellite Precipitation Measurement, Vol. 1, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 355–373.

    • Crossref
    • Export Citation
  • Kulie, M. S., and L. Milani, 2018: Seasonal variability of shallow cumuliform snowfall: A CloudSat perspective. Quart. J. Roy. Meteor. Soc., 144, 329343, https://doi.org/10.1002/qj.3222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. R. Wood, and T. S. L’Ecuyer, 2020: Global snowfall detection and measurement. Satellite Precipitation Measurement, Vol. 2, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 69, Springer, 699–716.

    • Crossref
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N. Wang, R. Ferraro, S. J. Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and A. P. Barros, 2004: Winter storm in the central Himalayas. J. Meteor. Soc. Japan, 82, 829844, https://doi.org/10.2151/jmsj.2004.829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2020: Radar snowfall measurement. Satellite Precipitation Measurement, Vol. 1, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 277–295.

    • Crossref
    • Export Citation
  • Liu, X., and Z.-Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., and G. Liu, 2010: Trends in temperature and precipitation on the Tibetan Plateau, 1961–2005. Climate Res., 43, 179190, https://doi.org/10.3354/cr00909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milani, L., and N. B. Wood, 2021: Biases in CloudSat falling snow estimates resulting from daylight-only operations. Remote Sens., 13, 2041, https://doi.org/10.3390/rs13112041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountain Research Initiative EDW Working Group, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Search Google Scholar
    • Export Citation
  • NASA, 2020: Aerosol, Cloud, Convection and Precipitation. Accessed 30 December 2020, https://vac.gsfc.nasa.gov/accp/home.htm.

  • Oki, R., T. Iguchi, and K. Nakamura, 2020: The GPM DPR validation program. Satellite Precipitation Measurement, Vol. 2, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 69, Springer, 503–514.

    • Crossref
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, https://doi.org/10.1007/s10584-009-9733-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rees, H. G., and D. N. Collins, 2006: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Processes, 20, 21572169, https://doi.org/10.1002/hyp.6209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouf, T., Y. Mei, V. Maggioni, P. Houser, and M. Noonan, 2020: A physically based atmospheric variables downscaling technique. J. Hydrometeor., 21, 93108, https://doi.org/10.1175/JHM-D-19-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Luethi, and C. Schaer, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, https://doi.org/10.1175/2008JCLI2625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, https://doi.org/10.1175/JAMC-D-12-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and G. Liu, 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, https://doi.org/10.1175/JHM-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, J., and A. P. Barros, 2018: Multi-year atmospheric forcing datasets for hydrologic modeling in regions of complex terrain – Methodology and evaluation over the Integrated Precipitation and Hydrology Experiment 2014 domain. J. Hydrol., 567, 824842, https://doi.org/10.1016/j.jhydrol.2016.12.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., T. Yao, W. Sun, M. Stievenard, and J. Jouzel, 2001: Relationship between δD and δ18O in precipitation on north and south of the Tibetan Plateau and moisture recycling. Sci. China, 44D, 789796, https://doi.org/10.1007/BF02907091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR). Sci. Online Lett. Atmos., 11, 1417, https://doi.org/10.2151/sola.2015-004.

    • Search Google Scholar
    • Export Citation
  • Turk, J., 2016: CloudSat-GPM coincidence dataset, version 1C. 18 pp., https://gpm.nasa.gov/sites/default/files/document_files/CSATGPM_COIN_ATBD.pdf.

  • Viste, E., and A. Sorteberg, 2015: Snowfall in the Himalayas: An uncertain future from a little-known past. Cryosphere, 9, 11471167, https://doi.org/10.5194/tc-9-1147-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer, 787 pp.

  • Wang, J., M. Zhang, S. Wang, Z. Ren, Y. Che, F. Qiang, and D. Qu, 2016: Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013. J. Geogr. Sci., 26, 12771288, https://doi.org/10.1007/s11442-016-1326-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., and T. S. L’Ecuyer, 2018: Level 2C snow profile process description and interface control document, product version P1_R05. NASA Doc., 26 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf.

  • Xu, W., L. Ma, M. Ma, H. Zhang, and W. Yuan, 2017: Spatial-temporal variability of snowcover and depth in the Qinghai-Tibetan Plateau. J. Climate, 30, 15211533, https://doi.org/10.1175/JCLI-D-15-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., J. Pu, A. Lu, Y. Wang, and W. Yu, 2007: Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res., 39, 642650, https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Z.-Y., X. Zhang, X. Liu, M. Colella, and X. Chen, 2008: An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J. Hydrometeor., 9, 301326, https://doi.org/10.1175/2007JHM903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Li, and D. Zheng, 2002: A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res., 21, 18, https://doi.org/10.11821/yj2002010001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 465 272 0
Full Text Views 162 105 14
PDF Downloads 196 124 14

Partitioning Solid and Liquid Precipitation over the Tibetan Plateau Based on Satellite Radar Observations

Ping SongaShandong Meteorological Service Center, Jinan, Shandong, China
bDepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Ping Song in
Current site
Google Scholar
PubMed
Close
and
Guosheng LiubDepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Guosheng Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Whether precipitation falls in the form of rain or snow is of great importance to glacier accumulation and ablation. Assessments of phase-aware precipitation have been lacking over the vast area of the Tibetan Plateau (TP) due to the scarcity of surface measurements and the low quality of satellite estimates in this region. In this study, we attempt a satellite radar-based method for this precipitation partition, in which the CloudSat radar is used for snowfall while the Global Precipitation Measurement Mission radar is used for rainfall estimation. Assuming that 11-yr snowfall and 5-yr rainfall estimates represent the mean states of precipitation at each phase, the phase partition characteristics, including its annual mean, spatial pattern, seasonal dependence, and variation with elevations, are then discussed. Averaged over the highland area (over 1 km above mean sea level) in TP, the annual total precipitation is estimated to be around 400 mm, of which about 40% falls as snow. The snowfall mass fraction is about 45% in the northern and 30% in the southern part of TP, and about 80% in the cold and 30% in the warm half of the year. Surface elevation is found to be a high-impact factor on total precipitation and its phase partition, generally with total precipitation decreasing but snowfall fraction increasing with the increase of elevation. While there are some shortcomings, the current approach in combining snowfall and rainfall estimates from two satellite radars presents a useful pathway to assessing phase-aware precipitation over the TP region.

Significance Statement

Whether precipitation falls in the form of rain or snow is of great importance to glacier accumulation and ablation over the Tibetan Plateau region, and yet a plateau-wide assessment of the phase-resolved precipitation has been lacking due to the scarcity of surface measurements in this region. In this study, we attempt a satellite radar-based method to separately estimate liquid and solid phase precipitation. The phase-resolved precipitation characteristics, including its annual mean, spatial pattern, seasonal dependence, and variation with elevation, are then analyzed and discussed. To the authors’ knowledge, this is the first satellite observation-based study to evaluate a plateau-wide, phase-resolved annual mean precipitation, and its dependence on season, location, and elevation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guosheng Liu, gliu@fsu.edu

Abstract

Whether precipitation falls in the form of rain or snow is of great importance to glacier accumulation and ablation. Assessments of phase-aware precipitation have been lacking over the vast area of the Tibetan Plateau (TP) due to the scarcity of surface measurements and the low quality of satellite estimates in this region. In this study, we attempt a satellite radar-based method for this precipitation partition, in which the CloudSat radar is used for snowfall while the Global Precipitation Measurement Mission radar is used for rainfall estimation. Assuming that 11-yr snowfall and 5-yr rainfall estimates represent the mean states of precipitation at each phase, the phase partition characteristics, including its annual mean, spatial pattern, seasonal dependence, and variation with elevations, are then discussed. Averaged over the highland area (over 1 km above mean sea level) in TP, the annual total precipitation is estimated to be around 400 mm, of which about 40% falls as snow. The snowfall mass fraction is about 45% in the northern and 30% in the southern part of TP, and about 80% in the cold and 30% in the warm half of the year. Surface elevation is found to be a high-impact factor on total precipitation and its phase partition, generally with total precipitation decreasing but snowfall fraction increasing with the increase of elevation. While there are some shortcomings, the current approach in combining snowfall and rainfall estimates from two satellite radars presents a useful pathway to assessing phase-aware precipitation over the TP region.

Significance Statement

Whether precipitation falls in the form of rain or snow is of great importance to glacier accumulation and ablation over the Tibetan Plateau region, and yet a plateau-wide assessment of the phase-resolved precipitation has been lacking due to the scarcity of surface measurements in this region. In this study, we attempt a satellite radar-based method to separately estimate liquid and solid phase precipitation. The phase-resolved precipitation characteristics, including its annual mean, spatial pattern, seasonal dependence, and variation with elevation, are then analyzed and discussed. To the authors’ knowledge, this is the first satellite observation-based study to evaluate a plateau-wide, phase-resolved annual mean precipitation, and its dependence on season, location, and elevation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guosheng Liu, gliu@fsu.edu
Save