• Aonashi, K., and Coauthors, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, https://doi.org/10.2151/jmsj.87A.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., B. Khakbaz, T. C. Jaw, A. AghaKouchak, K. Hsu, and S. Sorooshian, 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, https://doi.org/10.1016/j.jhydrol.2010.11.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. Andreadis, J. B. Fisher, F. J. Turk, S. Granger, T. Painter, and N. Das, 2014: Satellite-based precipitation estimation and its application for streamflow prediction over mountainous western US basins. J. Appl. Meteor. Climatol., 53, 28232842, https://doi.org/10.1175/JAMC-D-14-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bharti, V., C. Singh, J. Ettema, and T. A. R. Turkington, 2016: Spatiotemporal characteristics of extreme rainfall events over the Northwest Himalaya using satellite data. Int. J. Climatol., 36, 39493962, https://doi.org/10.1002/joc.4605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-J., S. U. S. Senarath, I. M. Dima-West, and M. P. Marcella, 2017: Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. Int. J. Climatol., 37, 180196, https://doi.org/10.1002/joc.4696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-J., C. C. Chen, M. H. Lo, J. Y. Juang, and C. M. Chang, 2020: Central Taiwan’s hydroclimate in response to land use/cover change. Environ. Res. Lett., 15, 034015, https://doi.org/10.1088/1748-9326/ab68aa.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 13231341, https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chien, F., B. Jou, P. Lin, and J. Hong, 2005: A real-time MM5/WRF forecasting system in Taiwan. 5th WRF/14th MM5 Users’ Workshop, Boulder, CO, NCAR, P.5, https://www2.mmm.ucar.edu/mm5/workshop/ws04/PosterSession/Chien.Fang-Ching.pdf.

  • Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp., https://ntrs.nasa.gov/api/citations/19950009331/downloads/19950009331.pdf.

  • Darbandsari, P., and P. Coulibaly, 2020: Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud., 31, 100730, https://doi.org/10.1016/j.ejrh.2020.100730.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., J. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, https://doi.org/10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El Kenawy, A., J. Lopez-Moreno, M. McCabe, and S. Vicente-Serrano, 2015: Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia. Global Planet. Change, 133, 188200, https://doi.org/10.1016/j.gloplacha.2015.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, X., Y. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613633, https://doi.org/10.1175/WAF-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J. Hydrometeor., 6, 573598, https://doi.org/10.1175/JHM437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., L. Yang, F. Tian, G. Ni, A. Hou, and H. Lu, 2017: Intercomparison of rainfall estimates from TRMM and GPM multisatellite products over the upper Mekong River basin. J. Hydrometeor., 18, 413430, https://doi.org/10.1175/JHM-D-16-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henny, L., C. Thorncroft, H. Hsu, and L. Bosart, 2021: Extreme rainfall in Taiwan: Seasonal statistics and trends. J. Climate, 34, 47114731, https://doi.org/10.1175/JCLI-D-20-0999.1.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F., M. Gebremichael, and T. Hopson, 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, https://doi.org/10.1175/2009JAMC2298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, J., C. Fong, L. Hsiao, Y. Yu, and C. Tzeng, 2015: Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Wea. Forecasting, 30, 217237, https://doi.org/10.1175/WAF-D-14-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L., and Coauthors, 2013: Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol., 506, 5568, https://doi.org/10.1016/j.jhydrol.2013.08.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., Y.-H. Chang, and P.-Y. Liu, 2018: Assessment of IMERG precipitation over Taiwan at multiple timescales. Atmos. Res., 214, 239–249, https://doi.org/10.1016/j.atmosres.2018.08.004.

    • Crossref
    • Export Citation
  • Huang, W.-R., P.-Y. Liu, Y.-H. Chang, and C.-Y. Liu, 2020: Evaluation and application of satellite precipitation products in studying the summer precipitation variations over Taiwan. Remote Sens., 12, 347, https://doi.org/10.3390/rs12030347.

    • Crossref
    • Export Citation
  • Huang, W.-R., P.-Y. Liu, Y.-H. Chang, and C.-A. Lee, 2021a: Evaluation of IMERG Level-3 products in depicting the July to October rainfall over Taiwan: Typhoon versus non-typhoon. Remote Sens., 13, 622, https://doi.org/10.3390/rs13040622.

    • Crossref
    • Export Citation
  • Huang, W.-R., P.-Y. Liu, J. Hsu, X. Li, and L. Deng, 2021b: Assessment of near-real-time satellite precipitation products from GSMaP in monitoring rainfall variations over Taiwan. Remote Sens., 13, 202, https://doi.org/10.3390/rs13020202.

    • Crossref
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

  • Huffman, G. J., and Coauthors, 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 6, 34 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205–218, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Export Citation
  • Kim, K., J. Park, J. Baik, and M. Choi, 2017: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95–105, https://doi.org/10.1016/j.atmosres.2016.12.007.

    • Crossref
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE. Trans. Geosci. Remote Sens., 45, 2259–2275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Export Citation
  • Kubota, T., and Coauthors, 2020: Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 355–373, https://doi.org/10.1007/978-3-030-24568-9_20.

    • Crossref
    • Export Citation
  • Li, C., J. Berner, J. Hong, C. Fong, and Y. Kuo, 2020: The Taiwan WRF Ensemble Prediction System: Scientific description, model-error representation and performance results. Asia-Pac. J. Atmos. Sci., 56, 115, https://doi.org/10.1007/s13143-019-00127-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., W. Tien, and C. Tung, 2009: Assessing the impact of climate change on the land hydrology in Taiwan. Paddy Water Environ., 7, 283292, https://doi.org/10.1007/s10333-009-0175-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., P. Aryastana, G. Liu, and W. Huang, 2020: Assessment of satellite precipitation product estimates over Bali Island. Atmos. Res., 244, 105032, https://doi.org/10.1016/j.atmosres.2020.105032.

    • Crossref
    • Export Citation
  • Livneh, B., P. J. Restrepo, and D. P. Lettenmaier, 2011: Development of a unified land model for prediction of surface hydrology and land–atmosphere interactions. J. Hydrometeor., 12, 1299–1320, https://doi.org/10.1175/2011JHM1361.1.

    • Crossref
    • Export Citation
  • Maggioni, V., P. Meyers, and M. Robinson, 2016: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, https://doi.org/10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Export Citation
  • Nash, J., and J. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., and P. E. Kirstetter, 2018: Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Quart. J. Roy. Meteor. Soc., 144 (Suppl. 1), 270281, https://doi.org/10.1002/qj.3218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, D. S. Pai, and A. AghaKouchak, 2016: From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water. Resour., 88, 1–7, https://doi.org/10.1016/j.advwatres.2015.11.008.

    • Crossref
    • Export Citation
  • Prakash, S., A. K. Mitra, A. AghaKouchak, Z. Liu, H. Norouzi, and D. S. Pai, 2018: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol., 556, 865–876, https://doi.org/10.1016/j.jhydrol.2016.01.029.

    • Crossref
    • Export Citation
  • Qin, Y., Z. Chen, Y. Shen, S. Zhang, and R. Shi, 2014: Evaluation of satellite rainfall estimates over the Chinese mainland. Remote Sens., 6, 11 649–11 672, https://doi.org/10.3390/rs61111649.

    • Crossref
    • Export Citation
  • Razavi, T., and P. Coulibaly, 2017: An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds. Can. Water Resour. J., 42, 220, https://doi.org/10.1080/07011784.2016.1184590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, H. L., and V. Mishra, 2016: Uncertainty and bias in satellite-based precipitation estimates over Indian subcontinental basins: Implications for real-time streamflow simulation and flood prediction. J. Hydrometeor., 17, 615636, https://doi.org/10.1175/JHM-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., and Coauthors, 2009: The GSMaP precipitation retrieval algorithm for microwave sounders—Part I: Over-ocean algorithm. IEEE. Trans. Geosci. Remote Sens., 47, 3084–3097, https://doi.org/10.1109/TGRS.2009.2019954.

    • Crossref
    • Export Citation
  • Shih, D., C. Chen, M. Li, C. Jang, C. Chang, and Y. Liao, 2019: Statistical and numerical assessments of groundwater resource subject to excessive pumping: Case study in Southwest Taiwan. Water, 11, 360, https://doi.org/10.3390/w11020360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sibson, R., 1981: A Brief Description of Natural Neighbour Interpolation. John Wiley and Sons, 21–36.

  • Simolo, C., M. Brunetti, M. Maugeri, and T. Nanni, 2010: Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach. Int. J. Climatol., 30, 15641576, https://doi.org/10.1002/joc.1992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. B., D.-J. Seo, V. I. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Moreda, and S. Cong, 2004: The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol., 298, 426, https://doi.org/10.1016/j.jhydrol.2004.03.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T., R. Reynolds, R. Livezey, and D. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K., and T. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9, 27272750, https://doi.org/10.1175/1520-0442(1996)009<2727:ITRVIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. Peterson, G. Kirchengast, D. Goodrich, and D. Wolff, 2018: Evaluation of Global Precipitation Measurement rainfall estimates against three dense gauge networks. J. Hydrometeor., 19, 517–532, https://doi.org/10.1175/JHM-D-17-0174.1.

    • Crossref
    • Export Citation
  • Tao, W., and Coauthors, 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Ocean. Sci., 22, 673696, https://doi.org/10.3319/TAO.2011.08.26.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., S. Hou, L. Yang, H. Hu, and A. Hou, 2018: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity? J. Hydrometeor., 19, 339–349, https://doi.org/10.1175/JHM-D-17-0161.1.

    • Crossref
    • Export Citation
  • Tseng, S. C., C. J. Chen, and S. U. S. Senarath, 2020: Evaluation of multi-site precipitation generators across scales. Int. J. Climatol., 40, 4622–4637, https://doi.org/10.1002/joc.6480.

    • Crossref
    • Export Citation
  • USACE, 2000: Hydrologic modeling system HEC-HMS: Technical reference manual. Hydrologic Engineering Center, U.S. Army Corps of Engineering, 138 pp., https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical%20Reference%20Manual_(CPD-74B).pdf.

  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137–151, https://doi.org/10.2151/jmsj.87A.137.

    • Crossref
    • Export Citation
  • Wang, H., and B. Yong, 2020: Quasi-global evaluation of IMERG and GSMaP precipitation products over land using gauge observations. Water, 12, 243–258, https://doi.org/10.3390/w12010243.

    • Crossref
    • Export Citation
  • Watson, D., 1994: Nngridr: An Implementation of Natural Neighbor Interpolation. Watson, 170 pp.

  • Weng, S. P., and C. D. Yang, 2018: The construction and verification of daily gridded rainfall dataset (1960–2015) (in Chinese with English abstract). Taiwan Water Conserv., 66 (4), 3352.

    • Search Google Scholar
    • Export Citation
  • Wu, M., and G. Lin, 2017: The very short-term rainfall forecasting for a mountainous watershed by means of an ensemble numerical weather prediction system in Taiwan. J. Hydrol., 546, 6070, https://doi.org/10.1016/j.jhydrol.2017.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and T. Yang, 2014: Uncertainty assessment: Reservoir inflow forecasting with ensemble precipitation forecasts and HEC-HMS. Adv. Meteor., 2014, 581756, https://doi.org/10.1155/2014/581756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yong, B., J. Wang, L. Ren, Y. You, P. Xie, and Y. Hong, 2016: Evaluating four multisatellite precipitation estimates over the Diaoyu Islands during Typhoon seasons. J. Hydrometeor., 17, 1623–1641, https://doi.org/10.1175/JHM-D-15-0165.1.

    • Crossref
    • Export Citation
  • Yu, P., and Y. Wang, 2009: Impact of climate change on hydrological processes over a basin scale in northern Taiwan. Hydrol. Processes, 23, 35563568, https://doi.org/10.1002/hyp.7456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, P., T. Yang, and C. Wu, 2002: Impact of climate change on water resources in southern Taiwan. J. Hydrol., 260, 161175, https://doi.org/10.1016/S0022-1694(01)00614-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, A., L. Xiao, C. Min, S. Chen, M. Kulie, C. Huang, and Z. Liang, 2019: Evaluation of latest GPM-era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmos. Res., 216, 7685, https://doi.org/10.1016/j.atmosres.2018.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. F. Lin, and R. L. Bras, 2018: Evaluation of the quality of precipitation products: A case study using WRF and IMERG data over the central United States. J. Hydrometeor., 19, 2007–2020, https://doi.org/10.1175/JHM-D-18-0153.1.

    • Crossref
    • Export Citation
  • Zhang, X., E. N. Anagnostou, M. Frediani, S. Solomos, and G. Kallos, 2013: Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas. J. Hydrometeor., 14, 1844–1858, https://doi.org/10.1175/JHM-D-12-0174.1.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 63
Full Text Views 37 37 15
PDF Downloads 48 48 24

Hydrometeorological Assessment of Satellite and Model Precipitation Products over Taiwan

View More View Less
  • 1 a National Chung Hsing University, Taichung, Taiwan
  • | 2 b Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

ABSTRACT

Satellite and model precipitation such as the Global Precipitation Measurement (GPM) data are valuable in hydrometeorological applications. This study investigates the performance of various satellite and model precipitation products in Taiwan from 2015 to 2017, including data derived from the Integrated Multisatellite Retrievals for GPM Early and Final Runs (IMERG_E and IMERG_F), Global Satellite Mapping of Precipitation in near–real time (GSMaP_NRT), and the Weather Research and Forecasting (WRF) Model. We assess these products by comparing them against data collected from 304 surface stations and gauge-based gridded data. Our assessment emphasizes factors influential in precipitation estimation, such as season, temperature, elevation, and extreme event. Further, we assess the hydrological response to each precipitation product via continuous flow simulation in two selected watersheds. The results indicate that the performance of these precipitation products is subject to seasonal and regional variations. The satellite products (i.e., IMERG and GSMaP) perform better than the model (i.e., WRF) in the warm season and vice versa in the cold season, most apparently in northern Taiwan. For selected extreme events, WRF can simulate better rainfall amount and distribution. The seasonal and regional variations in precipitation estimation are also reflected in flow simulations: IMERG in general produces the most rational flow simulation, GSMaP tends to overestimate and be least useful for hydrological applications, while WRF simulates high flows that show accurate time to the peak flows and are better in the southern watershed.

Significance Statement

Precipitation data derived from satellites or numerical weather prediction models are valuable resources since they can provide comprehensive information regarding areal precipitation over a specific region. However, such precipitation products of varying degrees of accuracy may hinder their usefulness for hydrological and other applications. Understanding which precipitation products to use under various circumstances requires knowledge accrued from scrutinizing the relative performance of these products. This study shows that over Taiwan, the performance of satellite and model precipitation is contingent upon season, region, and event. The best-performing precipitation products can thus generate most rational flow simulations, suggesting possibilities for more emerging applications.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) Special Collection.

Corresponding author: Chia-Jeng Chen, cjchen@nchu.edu.tw

ABSTRACT

Satellite and model precipitation such as the Global Precipitation Measurement (GPM) data are valuable in hydrometeorological applications. This study investigates the performance of various satellite and model precipitation products in Taiwan from 2015 to 2017, including data derived from the Integrated Multisatellite Retrievals for GPM Early and Final Runs (IMERG_E and IMERG_F), Global Satellite Mapping of Precipitation in near–real time (GSMaP_NRT), and the Weather Research and Forecasting (WRF) Model. We assess these products by comparing them against data collected from 304 surface stations and gauge-based gridded data. Our assessment emphasizes factors influential in precipitation estimation, such as season, temperature, elevation, and extreme event. Further, we assess the hydrological response to each precipitation product via continuous flow simulation in two selected watersheds. The results indicate that the performance of these precipitation products is subject to seasonal and regional variations. The satellite products (i.e., IMERG and GSMaP) perform better than the model (i.e., WRF) in the warm season and vice versa in the cold season, most apparently in northern Taiwan. For selected extreme events, WRF can simulate better rainfall amount and distribution. The seasonal and regional variations in precipitation estimation are also reflected in flow simulations: IMERG in general produces the most rational flow simulation, GSMaP tends to overestimate and be least useful for hydrological applications, while WRF simulates high flows that show accurate time to the peak flows and are better in the southern watershed.

Significance Statement

Precipitation data derived from satellites or numerical weather prediction models are valuable resources since they can provide comprehensive information regarding areal precipitation over a specific region. However, such precipitation products of varying degrees of accuracy may hinder their usefulness for hydrological and other applications. Understanding which precipitation products to use under various circumstances requires knowledge accrued from scrutinizing the relative performance of these products. This study shows that over Taiwan, the performance of satellite and model precipitation is contingent upon season, region, and event. The best-performing precipitation products can thus generate most rational flow simulations, suggesting possibilities for more emerging applications.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) Special Collection.

Corresponding author: Chia-Jeng Chen, cjchen@nchu.edu.tw

Supplementary Materials

    • Supplemental Materials (PDF 941.57 KB)
Save