• Abadi, M., and et al. , 2016: Tensorflow: A system for large-scale machine learning. 12th USENIX Symp. on Operating Systems Design and Implementation (OSDI’16), Savannah, GA, USENIX Association, 265283.

    • Search Google Scholar
    • Export Citation
  • Anderegg, W. R., and et al. , 2015: Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528532, https://doi.org/10.1126/science.aab1833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 2010: An Introduction to Atmospheric Physics. Cambridge University Press, 229 pp.

  • Berg, A., J. Sheffield, and P. C. Milly, 2017: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236244, https://doi.org/10.1002/2016GL071921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boke-Olén, N., J. Ardö, L. Eklundh, T. Holst, and V. Lehsten, 2018: Remotely sensed soil moisture to estimate savannah NDVI. PLOS ONE, 13, e0200328, https://doi.org/10.1371/journal.pone.0200328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and et al. , 2011: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res., 116, G02014, https://doi.org/10.1029/2010JG001593.

    • Search Google Scholar
    • Export Citation
  • Brady, N. C., and R. R. Weil, 2008: The Nature and Properties of Soils. Prentice Hall, 965 pp.

  • Brown, L. R., and B. Halweil, 1998: China’s water shortage could shake world food security. World Watch, 11, 1021.

  • Caldwell, M. M., T. E. Dawson, and J. H. Richards, 1998: Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia, 113, 151161, https://doi.org/10.1007/s004420050363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., F. Luo, and Z. Xiong, 1997: Sichuan Climate. Sichuan Science and Technology Press, 139–142.

  • Chen, S., X. Zhang, L. Shao, H. Sun, and J. Niu, 2015: A comparative study of yield, cost-benefit and water use efficiency between monoculture of spring maize and double crops of wheat-maize under rain-fed condition in the North China Plain. Chin. J. Eco-Agric., 23, 535543.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, J. He, J. Qin, J. Shi, J. Du, and Q. He, 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, https://doi.org/10.1029/2011JD015921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., W. E. Huffman, and S. Rozelle, 2009: Farm technology and technical efficiency: Evidence from four regions in China. China Econ. Rev., 20, 153161, https://doi.org/10.1016/j.chieco.2009.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., and et al. , 2013: Research advances and the development direction of key techniques for agriculture addressing climate change in China. Zhongguo Nongye Kexue, 45, 30973104.

    • Search Google Scholar
    • Export Citation
  • Danielson, J. J., and D. B. Gesch, 2011: Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS Open File Rep. 20111073, 23 pp., https://doi.org/10.3133/ofr20111073.

    • Crossref
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and et al. , 2017: ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, J., and et al. , 2014: Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA, 111, 32393244, https://doi.org/10.1073/pnas.1222474110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and et al. , 2014: SMAP handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space. NASA, 192 pp., https://smap.jpl.nasa.gov/system/internal_resources/details/original/178_SMAP_Handbook_FINAL_1_JULY_2014_Web.pdf.

  • Fang, K., C. Shen, D. Kifer, and X. Yang, 2017: Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys. Res. Lett., 44, 11 03011 039, https://doi.org/10.1002/2017GL075619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., L. Chen, and G. Liu, 1999: The objectives, tasks and characteristics of China ecological regionalization. Acta Ecol. Sin., 19, 591595.

    • Search Google Scholar
    • Export Citation
  • Gómez, D., P. Salvador, J. Sanz, C. Casanova, D. Taratiel, and J. L. Casanova, 2018: Machine learning approach to locate desert locust breeding areas based on ESA CCI soil moisture. J. Appl. Remote Sens., 12, 036011, https://doi.org/10.1117/1.JRS.12.036011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo, 2019: Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717739, https://doi.org/10.5194/essd-11-717-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, B., H. Tao, P. Wang, H. Knoerzer, and W. Claupein, 2013: Water utilization of different cropping production systems in North China Plain. Zhongguo Nongye Daxue Xuebao, 18, 5360.

    • Search Google Scholar
    • Export Citation
  • Gupta, T. K., and K. Raza, 2020: Optimizing deep feedforward neural network architecture: A Tabu search based approach. Neural Process. Lett., 51, 28552870, https://doi.org/10.1007/s11063-020-10234-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., X. Bian, Y. Fu, and Y. Qin, 2012: Research on water consumption and its law of main crops in west Liaohe River plain. Jieshui Guan’gai, 11, 14.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and et al. , 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, https://doi.org/10.1038/ngeo1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P. M., Y. Li, and M. E. Sumner, 2011: Handbook of Soil Sciences: Properties and Processes. CRC Press, 1442 pp.

  • Hughes, T. P., and et al. , 2019: Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Climate Change, 9, 4043, https://doi.org/10.1038/s41558-018-0351-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jia, B., J. Liu, Z. Xie, and C. Shi, 2018: Interannual variations and trends in remotely sensed and modeled soil moisture in China. J. Hydrometeor., 19, 831847, https://doi.org/10.1175/JHM-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516520, https://doi.org/10.1038/nature20780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, D., S. Swenson, K. W. Oleson, D. M. Lawrence, R. Fisher, A. C. Lola da Costa, and P. Gentine, 2019: Implementing plant hydraulics in the community land model, version 5. J. Adv. Model. Earth Syst., 11, 485513, https://doi.org/10.1029/2018MS001500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S., M. A. Hanjra, and J. Mu, 2009: Water management and crop production for food security in China: A review. Agric. Water Manage., 96, 349360, https://doi.org/10.1016/j.agwat.2008.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolassa, J., P. Gentine, C. Prigent, F. Aires, and S. Alemohammad, 2017: Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sens. Environ., 195, 202217, https://doi.org/10.1016/j.rse.2017.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolassa, J., and et al. , 2018: Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens. Environ., 204, 4359, https://doi.org/10.1016/j.rse.2017.10.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. P. Mahanama, B. Livneh, D. P. Lettenmaier, and R. H. Reichle, 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616, https://doi.org/10.1038/ngeo944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225234, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, H., B. Li, Y. Bai, Y. Huang, Y. Lv, and G. Li, 2006: Modeling soil organic matter dynamics under intensive cropping systems on the Huang-Huai-Hai Plain of China. Pedosphere, 16, 409419, https://doi.org/10.1016/S1002-0160(06)60070-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, M., X. Kong, and J. Wang, 2018: Estimation of sustainable grain productivity for arable land under water balance in the Huang-Huai-Hai Plain. Acta Geogr. Sin., 73, 535549.

    • Search Google Scholar
    • Export Citation
  • Li, K., X. Yang, Z. Liu, W. Wang, and F. Chen, 2010: Analysis of the potential influence of global climate change on cropping systems in China III. The change characteristics of climatic resources in northern China and its potential influence on cropping systems. Agric. Sci. China, 43, 20882097.

    • Search Google Scholar
    • Export Citation
  • Li, W., and L. Wenhua, 2001: Agro-Ecological Farming Systems in China. Taylor & Francis, 433 pp.

  • Li, Y., X. Yang, W. Wang, and Z. Liu, 2010: Changes of China agricultural climate resources under the background of climate change I. Spatiotemporal change characteristics of agricultural climate resources in South China. Ying Yong Sheng Tai Xue Bao, 21, 26052614.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2015: Agriculture intensifies soil moisture decline in Northern China. Sci. Rep., 5, 11261, https://doi.org/10.1038/srep11261.

  • Lobell, D. B., and S. M. Gourdji, 2012: The influence of climate change on global crop productivity. Plant Physiol., 160, 16861697, https://doi.org/10.1104/pp.112.208298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., and et al. , 2017: Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A., S. Shukla, K. R. Arsenault, S. Wang, C. D. Peters-Lidard, and J. P. Verdin, 2016: Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf., 48, 96109, https://doi.org/10.1016/j.jag.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medlyn, B. E., and et al. , 2011: Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol., 17, 21342144, https://doi.org/10.1111/j.1365-2486.2010.02375.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. Van Heerwaarden, and J. V.-G. De Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Bureau of Statistics of China, 2020: National data. Accessed 12 May 2020, http://data.stats.gov.cn/english/easyquery.htm?cn= E0103.

  • Naz, B. S., S. Kollet, H.-J. H. Franssen, C. Montzka, and W. Kurtz, 2020: A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data, 7, 111, https://doi.org/10.1038/s41597-020-0450-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Climate, 14, 17901808, https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogle, K., and et al. , 2015: Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett., 18, 221235, https://doi.org/10.1111/ele.12399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papale, D., and R. Valentini, 2003: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol., 9, 525535, https://doi.org/10.1046/j.1365-2486.2003.00609.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portmann, F. T., S. Siebert, and P. Döll, 2010: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles, 24, GB1011, https://doi.org/10.1029/2008GB003435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, H., X. Yang, and X. Zhang, 2010: Optimized cropping systems to prevent and avoid the drought disaster based on the adaptation between precipitation and crop water requirement in Hunan Province. Acta Ecol. Sin., 30, 42574265.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles, 22, GB1003, https://doi.org/10.1029/2007GB002952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, and N. Carvalhais, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195204, https://doi.org/10.1038/s41586-019-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H., and Y. Luo, 2004: Water-consumption of winter wheat and summer maize in the Northwest plain of Shandong Province. Guangai Paishui Xuebao, 23, 3739.

    • Search Google Scholar
    • Export Citation
  • Ren, M. E., and H. Bao, 1992: China’s Physical Regions and Their Exploitation and Consolidation. Science Press, 483 pp.

  • Rodriguez-Fernandez, N. J., and et al. , 2015: Soil moisture retrieval using neural networks: Application to SMOS. IEEE Trans. Geosci. Remote Sens., 53, 59916007, https://doi.org/10.1109/TGRS.2015.2430845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., and D. Entekhabi, 1994: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling. Water Resour. Res., 30, 27372749, https://doi.org/10.1029/94WR00948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., and D. Entekhabi, 2011: An alternate and robust approach to calibration for the estimation of land surface model parameters based on remotely sensed observations. Geophys. Res. Lett., 38, L16404, https://doi.org/10.1029/2011GL048366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and et al. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shangguan, W., and et al. , 2013: A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst., 5, 212224, https://doi.org/10.1002/jame.20026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaxson, F., and R. Barber, 2003: Optimizing soil moisture for plant production: The significance of soil porosity. UN-FAO, FAO Soils Bull. 79, http://www.fao.org/3/y4690e/y4690e00.htm.

  • Sui, Y., W. Huang, X. Yang, and M. Li, 2012: Characteristics and adaption of seasonal drought in southern China under the background of global climate change II. Spatiotemporal characteristics of drought for wintering grain and oil crops based on crop water deficit index. Ying Yong Sheng Tai Xue Bao, 23, 24672476.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. Van Der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., D. P. Lettenmaier, and J. Sheffield, 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 32573271, https://doi.org/10.1175/2011JCLI3733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., X. Pan, J. Luo, Z. Luo, C. Chang, and Y. Shen, 2015: Using remote sensing to analyze spatiotemporal variations in crop planting in the North China Plain. Chin. J. Eco-Agric., 23, 11991209.

    • Search Google Scholar
    • Export Citation
  • Wang, M., H. Qu, X. Yang, X. Zhang, and M. Li, 2012: Cropping system optimization based on the comparative analysis of precipitation utilization in Sichuan Province. Acta Ecol. Sin., 32, 20992109, https://doi.org/10.5846/STXB201106200886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, J., and Y. Huang, 2012: China’s food security and its global implications. China. Int. J., 10, 113124.

  • Xia, Y., and et al. , 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, https://doi.org/10.1016/j.jhydrol.2014.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., X. Xiao, and H. Huang, 2010: Satellite observed crop calendar and its spatio-temporal characteristics in multiple cropping area of Huang-Huai-Hai Plain. Acta Ecol. Sin., 30, 24162423.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and et al. , 2020: Development of a daily soil moisture product for the period of 2002–2011 in Mainland China. Sci. China Earth Sci., 63, 11131125, https://doi.org/10.1007/S11430-019-9588-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, T., W. Zhao, Z. Wang, X. Lu, and S. Lu, 2015: Changes of cropping system in China based on remotely sensed NDVI data. Zhongguo Nongye Kexue, 48, 19151925.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and F. Chen, 2014: Climate Change Impacts on Cropping System in China. China Meteorological Press, 169 pp.

  • Yang, X., Z. Liu, and C. Fu, 2011: The possible effect of climate warming on northern limits of cropping system and crop yield in China. Agric. Sci. China, 10, 585594, https://doi.org/10.1016/S1671-2927(11)60040-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., Z. Cai, X. Jing, and S. Zhang, 2007: Maize in Northeast Region of China. China Agriculture Press, 319 pp.

  • Ye, L., and et al. , 2013: Climate change impact on China food security in 2050. Agron. Sustain. Dev., 33, 363374, https://doi.org/10.1007/s13593-012-0102-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and Y. Qian, 2003: Annual distribution features of precipitation in China and their interannual variations. J. Meteor. Res., 17, 146163.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and et al. , 2019: Drought monitoring and evaluation by ESA CCI soil moisture products over the Yellow River basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 33763386, https://doi.org/10.1109/JSTARS.2019.2934732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C. Y. Xu, X. Chen, and Z. Zhang, 2011: Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960–2005. Int. J. Climatol., 31, 16651678, https://doi.org/10.1002/joc.2193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., X. Yang, Z. Liu, D. Cheng, W. Wang, and F. Chen, 2010: The possible effect of global climate changes on cropping systems boundary in China II. The characteristics of climatic variables and the possible effect on northern limits of cropping systems in South China. Agric. Sci. China, 43, 18601867.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., X. Yang, Z. Liu, S. Lv, J. Wang, and F. Chen, 2014: The possible effects of global warming on cropping systems in China X. The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China. Agric. Sci. China, 47, 31433156, https://doi.org/10.3864/J.ISSN.0578-1752.2014.16.003.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., D. Xiao, Y. Qi, and H. Bai, 2018: Crop yield and water consumption of different cropping patterns under different precipitation years in North China Plain. Nongye Gongcheng Xuebao, 34, 108116, https://doi.org/10.3901/JME.2018.03.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., and Q. Yang, 1997: Researches on Regional Physio-Geographical System. China Environmental Science Press, 167 pp.

  • Zhou, S., and et al. , 2019: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA, 116, 18 84818 853, https://doi.org/10.1073/pnas.1904955116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., H. Wang, C. Tong, W. Liu, and B. Du, 2019: Evaluation of ESA active, passive and combined soil moisture products using upscaled ground measurements. Sensors, 19, 2718, https://doi.org/10.3390/s19122718.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 404 404 50
Full Text Views 68 68 16
PDF Downloads 90 90 21

Development of a Daily Multilayer Cropland Soil Moisture Dataset for China Using Machine Learning and Application to Cropping Patterns

View More View Less
  • 1 Earth and Environmental Engineering Department, Columbia University, New York, New York
  • | 2 Agrometeorological Center of Sichuan Province, Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, China
  • | 3 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
  • | 4 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
  • | 5 Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland
  • | 6 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 7 Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
© Get Permissions
Restricted access

Abstract

Soil moisture (SM) links the water and energy cycles over the land–atmosphere interface and largely determines ecosystem functionality, positioning it as an essential player in the Earth system. Despite its importance, accurate estimation of large-scale SM remains a challenge. Here we leverage the strength of neural network (NN) and fidelity of long-term measurements to develop a daily multilayer cropland SM dataset for China from 1981 to 2013, implemented for a range of different cropping patterns. The training and testing of the NN for the five soil layers (0–50 cm, 10-cm depth each) yield R2 values of 0.65–0.70 and 0.64–0.69, respectively. Our analysis reveals that precipitation and soil properties are the two dominant factors determining SM, but cropping pattern is also crucial. In addition, our simulations of alternative cropping patterns indicate that winter wheat followed by fallow will largely alleviate the SM depletion in most parts of China. On the other hand, cropping patterns of fallow in the winter followed by maize/soybean seem to further aggravate SM decline in the Huang-Huai-Hai region and southwestern China, relative to prevalent practices of double cropping. This may be due to their low soil porosity, which results in more soil water drainage, as opposed to the case that winter crop roots help maintain SM. This multilayer cropland SM dataset with granularity of cropping patterns provides an important alternative and is complementary to modeled and satellite-retrieved products.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-19-0301.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongdong Chen, peter19831203@163.com

Abstract

Soil moisture (SM) links the water and energy cycles over the land–atmosphere interface and largely determines ecosystem functionality, positioning it as an essential player in the Earth system. Despite its importance, accurate estimation of large-scale SM remains a challenge. Here we leverage the strength of neural network (NN) and fidelity of long-term measurements to develop a daily multilayer cropland SM dataset for China from 1981 to 2013, implemented for a range of different cropping patterns. The training and testing of the NN for the five soil layers (0–50 cm, 10-cm depth each) yield R2 values of 0.65–0.70 and 0.64–0.69, respectively. Our analysis reveals that precipitation and soil properties are the two dominant factors determining SM, but cropping pattern is also crucial. In addition, our simulations of alternative cropping patterns indicate that winter wheat followed by fallow will largely alleviate the SM depletion in most parts of China. On the other hand, cropping patterns of fallow in the winter followed by maize/soybean seem to further aggravate SM decline in the Huang-Huai-Hai region and southwestern China, relative to prevalent practices of double cropping. This may be due to their low soil porosity, which results in more soil water drainage, as opposed to the case that winter crop roots help maintain SM. This multilayer cropland SM dataset with granularity of cropping patterns provides an important alternative and is complementary to modeled and satellite-retrieved products.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-19-0301.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongdong Chen, peter19831203@163.com

Supplementary Materials

    • Supplemental Materials (PDF 963 KB)
Save