• Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, https://doi.org/10.1175/BAMS-85-11-1673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurements by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 17451758, https://doi.org/10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., J. M. Wilczak, and A. B. White, 2008: Convective boundary layer depth estimation from wind profilers: Statistical comparison between an automated algorithm and expert estimations. J. Atmos. Oceanic Technol., 25, 13971413, https://doi.org/10.1175/2008JTECHA981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the community atmosphere model. J. Climate, 26, 96559676, https://doi.org/10.1175/JCLI-D-13-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and D. J. Karoly, 2007: A brief evaluation of precipitation from the North American regional reanalysis. J. Hydrometeor., 8, 837846, https://doi.org/10.1175/JHM595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., and Coauthors, 2019: The DOE E3SM coupled model version 1: Description and results at high resolution. J. Adv. Model. Earth Syst., 11, 40954146, https://doi.org/10.1029/2019MS001870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the community climate system model. J. Climate, 17, 930951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553828, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, https://doi.org/10.1007/s00382-011-1127-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2018: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375392, https://doi.org/10.1175/JHM-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., E. F. Wood, and R. K. Vinukollu, 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, https://doi.org/10.1175/JHM-D-11-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., and Coauthors, 2014: Land-surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors. Atmos. Chem. Phys., 14, 83438367, https://doi.org/10.5194/acp-14-8343-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, J., and M. J. Prather, 2009: Stratospheric variability and tropospheric ozone. J. Geophys. Res., 114, D06102, https://doi.org/10.1029/2008JD010942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M., J. Delamere, E. Mlawer, M. Shephard, S. Clough, and W. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, and S. A. Klein, 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophys. Res. Lett., 33, L19809, https://doi.org/10.1029/2006GL027022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24, 45414557, https://doi.org/10.1175/2011JCLI3978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, P. J., D. H. Portis, and A. Zangvil, 2012: Investigation of large-scale atmospheric moisture budget and land surface interactions over U.S. Southern Great Plains including for CLASIC (June 2007). J. Hydrometeor., 13, 17191738, https://doi.org/10.1175/JHM-D-12-01.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., Y. Zhang, and S. A. Klein, 2018: Observed boundary layer controls on shallow cumulus at the ARM southern Great Plains site. J. Atmos. Sci., 75, 22352255, https://doi.org/10.1175/JAS-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225234, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., and Coauthors, 2007: An analysis of the warm-season diurnal cycle over the continental United States and Northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, https://doi.org/10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the community atmosphere model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013: Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts. J. Climate, 26, 15161534, https://doi.org/10.1175/JCLI-D-12-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, https://doi.org/10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2015: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 18101827, https://doi.org/10.1002/2015MS000490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the central U.S. J. Geophys. Res. Atmos., 123, 28882909, https://doi.org/10.1002/2017JD027194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2020: A multi-year short-range hindcast experiment for evaluating climate model moist processes from diurnal to interannual time scales. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-39.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3), Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19, 815837, https://doi.org/10.1175/JCLI3635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The university of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and S. A. Klein, 2014: Land-atmosphere coupling manifested in warm-season observations on the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 119, 509528, https://doi.org/10.1002/2013JD020492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031916, https://doi.org/10.1175/BAMS-85-12-1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2017: Using ARM observations to evaluate climate model simulations of land-atmosphere coupling on the U.S. southern Great Plains. J. Geophys. Res. Atmos., 122, 11 52411 548, https://doi.org/10.1002/2017JD027141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land-air-cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, https://doi.org/10.1175/JHM-D-12-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2019: An overview of the atmospheric component of the energy Exascale Earth System Model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2017: Exact expression for the lifting condensation level. J. Atmos. Sci., 74, 38913900, https://doi.org/10.1175/JAS-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010: NARR’s atmospheric water cycle components. Part II: Summertime mean and diurnal interactions. J. Hydrometeor., 11, 12201233, https://doi.org/10.1175/2010JHM1279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2013: Atmosphere-land surface interactions over the Southern Great Plains: Characterization from pentad analysis of DOE ARM field observations and NARR. J. Climate, 26, 875886, https://doi.org/10.1175/JCLI-D-11-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, https://doi.org/10.1175/2009JHM1066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011a: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2011b: Results from Local Land-Atmosphere Coupling (LoCo) Project. GEWEX News, Vol. 21, No. 4, International GEWEX Project Office, Silver Spring, MD, 7–9, www.gewex.org/gewex-content/files_mf/1432209597Nov2011.pdf.

  • Santanello, J. A., C. D. Peters-Lidard, A. Kennedy, and S. V. Kumar, 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. Southern Great Plains. J. Hydrometeor., 14, 324, https://doi.org/10.1175/JHM-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., J. Roundy, and P. A. Dirmeyer, 2015: Quantifying the land–atmosphere coupling behavior in modern reanalysis products over the U.S. Southern Great Plains. J. Climate, 28, 58135829, https://doi.org/10.1175/JCLI-D-14-00680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Luthi, M. Litschi, and C. Schar, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H.-J., C. R. Ferguson, and J. K. Roundy, 2016: Land–atmosphere coupling at the Southern Great Plains Atmospheric Radiation Measurement (ARM) field site and its role in anomalous afternoon peak precipitation. J. Hydrometeor., 17, 541556, https://doi.org/10.1175/JHM-D-15-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., S. Xie, Y. Zhang, T. J. Phillips, J. A. Santanello, D. R. Cook, L. D. Riihimaki, and K. L. Gaustad, 2018: Heterogeneity in warm-season land-atmosphere coupling over the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 78677882, https://doi.org/10.1029/2018JD028463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., and Coauthors, 2019: Regionally refined test bed in E3SM Atmosphere Model version 1 (EAMv1) and applications for high-resolution modeling. Geosci. Model Dev., 12, 26792706, https://doi.org/10.5194/gmd-12-2679-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., S. Xie, M. Zhang, Q. Tang, Y. Zhang, S. Klein, and D. R. Cook, 2019: Differences in eddy-correlation and energy-balance surface turbulent heat flux measurements and their impacts on the large-scale forcing fields at the ARM SGP site. J. Geophys. Res. Atmos., 124, 33013318, https://doi.org/10.1029/2018JD029689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., Y. Zhang, S. Tang, Q. Tang, H.-Y. Ma, S. Xie, and M. Zhang, 2019: Regional moisture budget and land-atmosphere coupling over the US Southern Great Plains inferred from the ARM long-term observations. J. Geophys. Res. Atmos., 124, 10 09110 108, https://doi.org/10.1029/2019JD030585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., and P. A. Dirmeyer, 2014: A process-based framework for quantifying the atmospheric preconditioning of surface triggered convection. Geophys. Res. Lett., 41, 173178, https://doi.org/10.1002/2013GL057984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., P. A. Dirmeyer, and J. A. Santanello, 2015: The heated condensation framework. Part I: Description and Southern Great Plains case study. J. Hydrometeor., 16, 19291945, https://doi.org/10.1175/JHM-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. De Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., P. M. Caldwell, S. A. Klein, Q. Tang, and M. L. Branstetter, 2018: The atmospheric hydrologic cycle in the ACME v0.3 model. Climate Dyn., 50, 32513279, https://doi.org/10.1007/s00382-017-3803-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., H. Su, and Z.-L. Yang, 2016: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467481, https://doi.org/10.1007/s00382-015-2593-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., and M. S. Torn, 2015: Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling. Geophys. Res. Lett., 42, 94169424, https://doi.org/10.1002/2015GL066305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., Y. Lu, L. M. Kueppers, W. J. Riley, S. C. Biraud, J. E. Bagley, and M. S. Torn, 2016: Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 121, 12 12512 144, https://doi.org/10.1002/2016JD025223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: Clouds and more: ARM climate modeling best estimate data. Bull. Amer. Meteor. Soc., 91, 1320, https://doi.org/10.1175/2009BAMS2891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2018: Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model. J. Adv. Model. Earth Syst., 10, 26182644, https://doi.org/10.1029/2018MS001350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2019: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. J. Adv. Model. Earth Syst., 11, 22902310, https://doi.org/10.1029/2019MS001702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., D. H. Portis, and P. J. Lamb, 2001: Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part I: Relationships between moisture budget components on different timescales. J. Climate, 14, 582597, https://doi.org/10.1175/1520-0442(2001)014<0582:IOTLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangvil, A., D. H. Portis, and P. J. Lamb, 2004: Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part II: Recycling of local evapotranspiration and association with soil moisture and crop yields. J. Climate, 17, 32833301, https://doi.org/10.1175/1520-0442(2004)017<3283:IOTLAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Xie, S. A. Klein, H.-y. Ma, S. Tang, K. Van Weverberg, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site. J. Geophys. Res. Atmos., 123, 29682992, https://doi.org/10.1002/2017JD027200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524, https://doi.org/10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129, 295311, https://doi.org/10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM SGP site. J. Atmos. Sci., 67, 29432959, https://doi.org/10.1175/2010JAS3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2013: Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle observations collected at the ARM southern Great Plains site. J. Atmos. Sci., 70, 12971315, https://doi.org/10.1175/JAS-D-12-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2019: Evaluation of clouds in version 1 of the E3SM atmosphere model with satellite simulators. J. Adv. Model. Earth Syst., 11, 12531268, https://doi.org/10.1029/2018MS001562.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 377 377 19
Full Text Views 153 153 8
PDF Downloads 161 161 9

Land–Atmosphere Coupling at the U.S. Southern Great Plains: A Comparison on Local Convective Regimes between ARM Observations, Reanalysis, and Climate Model Simulations

View More View Less
  • 1 Lawrence Livermore National Laboratory, Livermore, California
  • | 2 Argonne National Laboratory, Lemont, Illinois
  • | 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Using the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land–atmosphere (LA) coupling in the North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the local coupling metrics. NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local LA coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases toward mid-to-late summers, which may be an amplification through a positive LA feedback among initial atmosphere and land states, convection triggering and large-scale circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Tao, tao4@llnl.gov

Abstract

Using the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land–atmosphere (LA) coupling in the North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the local coupling metrics. NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local LA coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases toward mid-to-late summers, which may be an amplification through a positive LA feedback among initial atmosphere and land states, convection triggering and large-scale circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Tao, tao4@llnl.gov
Save