• Abboud, J. M., M. C. Ryan, and G. D. Osborn, 2018: Groundwater flooding in a river-connected alluvial aquifer. J. Flood Risk Manage., 11, e12334, https://doi.org/10.1111/jfr3.12334.

    • Search Google Scholar
    • Export Citation
  • Allen, D. M., D. C. Mackie, and M. Wei, 2004: Groundwater and climate change: A sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeol. J., 12, 270290, https://doi.org/10.1007/s10040-003-0261-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, W. M., T. E. Reilly, and O. L. Franke, 1999: Sustainability of ground-water resources. USGS Circular 1186, 79 pp., https://pubs.usgs.gov/circ/circ1186/pdf/circ1186.pdf.

    • Crossref
    • Export Citation
  • Alley, W. M., R. W. Healy, J. W. LaBaugh, and T. E. Reilly, 2002: Flow and storage in groundwater systems. Science, 296, 19851990, https://doi.org/10.1126/science.1067123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, W. P., Jr., and R. E. Emanuel, 2008: Effect of interannual and interdecadal climate oscillations on groundwater in North Carolina. Geophys. Res. Lett., 35, L23402, https://doi.org/10.1029/2008GL036054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, K. R., and Coauthors, 2018: The Land surface Data Toolkit (LDT v7.2) – A data fusion environment for land data assimilation systems. Geosci. Model Dev., 11, 36053621, https://doi.org/10.5194/gmd-11-3605-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bair, E. H., K. Rittger, R. E. Davis, T. H. Painter, and J. Dozier, 2016: Validating reconstruction of snow water equivalent in California’s Sierra Nevada using measurements from the NASA Airborne Snow Observatory. Water Resour. Res., 52, 84378460, https://doi.org/10.1002/2016WR018704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Befus, K. M., K. D. Kroeger, C. G. Smith, and P. W. Swarzenski, 2017: The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico coastal waters. Geophys. Res. Lett., 44, 10 39610 406, https://doi.org/10.1002/2017GL075238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K., and P. Germann, 2013: Macropores and water flow in soils revisited. Water Resour. Res., 49, 30713092, https://doi.org/10.1002/wrcr.20156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, J. P., B. P. Marchant, S. H. Bricker, and R. B. Morgan, 2015: Regional analysis of groundwater droughts using hydro-graph classification. Hydrol. Earth Syst. Sci., 19, 43274344, https://doi.org/10.5194/hess-19-4327-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, G., B. R. Scanlon, D. Han, and C. Zheng, 2016: Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. J. Hydrol., 537, 260270, https://doi.org/10.1016/j.jhydrol.2016.03.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celia, M., E. T. Bouloutas, and R. L. Zarba, 1990: A General mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res., 26, 14831496, https://doi.org/10.1029/WR026i007p01483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Condon, L. E., A. L. Atchley, and R. M. Maxwell, 2020: Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun., 11, 873, https://doi.org/10.1038/s41467-020-14688-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Res. Res., 20, 682690, https://doi.org/10.1029/WR020i006p00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, https://doi.org/10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crosbie, R. S., I. Jolly, F. Leaney, and C. Petheram, 2010: Can the dataset of field based recharge estimates in Australia be used to predict recharge in data-poor areas? Hydrol. Earth Syst. Sci., 14, 20232038, https://doi.org/10.5194/hess-14-2023-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosbie, R. S., B. R. Scanlon, F. S. Mpelasoka, R. C. Reedy, J. B. Gates, and L. Zhang, 2013: Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resour. Res., 49, 39363951, https://doi.org/10.1002/wrcr.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, I. D., E. H. Sutanudjaja, L. P. H. Van Beek, and M. F. P. Bierkens, 2015: A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci., 19, 823837, https://doi.org/10.5194/hess-19-823-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, I. D., R. L. van Beek, T. Gleeson, N. Moosdorf, O. Schmitz, E. H. Sutanudjaja, and M. F. Bierkens, 2017: A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour., 102, 5367, https://doi.org/10.1016/j.advwatres.2017.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, I. D., L. Condon, and R. Maxwell, 2020: Hyper-resolution continental-scale 3-D aquifer parameterization for groundwater modeling. Water Resour. Res., 56, e2019WR026004, https://doi.org/10.1029/2019WR026004.

    • Search Google Scholar
    • Export Citation
  • Döll, P., H. M. Schmied, C. Schuh, F. T. Portmann, and A. Eicker, 2014: Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res., 50, 56985720, https://doi.org/10.1002/2014WR015595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmunds, W. M., and C. B. Gaye, 1994: Estimating the spatial variability of groundwater recharge in the Sahel using chloride. J. Hydrol., 156, 4759, https://doi.org/10.1016/0022-1694(94)90070-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and P. J.-F. Yeh, 1999: On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour. Res., 35, 11991217, https://doi.org/10.1029/1998WR900071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., and Coauthors, 2021: A high-resolution land data assimilation system optimized for the western United States. J. Amer. Water Resour. Assoc., in press.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, https://doi.org/10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, W., M. Zhong, J.-M. Lemoine, R. Biancale, H.-T. Hsu, and J. Xia, 2013: Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res., 49, 21102118, https://doi.org/10.1002/wrcr.20192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C., and D. Mocko, 2017: Diagnosing an artificial trend in NLDAS-2 afternoon precipitation. J. Hydrometeor., 18, 10511070, https://doi.org/10.1175/JHM-D-16-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flint, A. L., L. E. Flint, E. M. Kwicklis, J. M. Fabryka-Martin, and G. S. Bodvarsson, 2002: Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeol. J., 10, 180204, https://doi.org/10.1007/s10040-001-0169-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, T., Y. Wada, M. F. Bierkens, and L. P. Van Beek, 2012: Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197200, https://doi.org/10.1038/nature11295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohardoust, M. R., M. Sadeghi, M. Z. Ahmadi, S. B. Jones, and M. Tuller, 2017: Hydraulic conductivity of stratified unsaturated soils: Effects of random variability and layering. J. Hydrol., 546, 8189, https://doi.org/10.1016/j.jhydrol.2016.12.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, T. R., M. Taniguchi, H. Kooi, J. J. Gurdak, D. M. Allen, K. M. Hiscock, H. Treidel, and A. Aureli, 2011: Beneath the surface of global change, Impacts of climate change on groundwater. J. Hydrol., 405, 532560, https://doi.org/10.1016/j.jhydrol.2011.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurdak, J. J., and C. D. Roe, 2010: Review: Recharge rates and chemistry beneath playas of the high plains aquifer, USA. Hydrogeol. J., 18, 17471772, https://doi.org/10.1007/s10040-010-0672-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, R. T., M. D. Dettinger, and M. W. Newhouse, 2006: Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States. Hydrogeol. J., 14, 11221146, https://doi.org/10.1007/s10040-006-0067-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, A., T. Gleeson, Y. Wada, and T. Wagener, 2017: Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl. Acad. Sci. USA, 114, 28422847, https://doi.org/10.1073/pnas.1614941114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, R. W., 2010: Estimating Groundwater Recharge. Cambridge University Press, 264 pp.

  • Hein, A., L. Condon, and R. Maxwell, 2019: Evaluating the relative importance of precipitation, temperature and land-cover change in the hydrologic response to extreme meteorological drought conditions over the North American High Plains. Hydrol. Earth Syst. Sci., 23, 19311950, https://doi.org/10.5194/hess-23-1931-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik, 2012: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasechko, S., and D. Perrone, 2020: California's Central Valley groundwater wells run dry during recent drought. Earth’s Future, 8, e2019EF001339, https://doi.org/10.1029/2019EF001339.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, https://doi.org/10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Jury, W. A., W. Gardner, and W. H. Gardner, 1991: Soil Physics. John Wiley & Sons, 328 pp.

  • Karl, T. R., G. Kukla, V. N. Razuvayev, M. J. Changery, R. G. Quayle, R. R. Heim Jr., D. R. Easterling, and C. B. Fu, 1991: Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18, 22532256, https://doi.org/10.1029/91GL02900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoben, W. J., J. E. Freer, and R. A. Woods, 2019: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci., 23, 43234331, https://doi.org/10.5194/hess-23-4323-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, J., A. Siemann, S. Stisen, and J. Sheffield, 2016: Spatial validation of large-scale land surface models against monthly land surface temperature patterns using innovative performance metrics. J. Geophys. Res. Atmos., 121, 54305452, https://doi.org/10.1002/2015JD024482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., and R. M. Maxwell, 2008: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, https://doi.org/10.1029/2007WR006004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konikow, L. F., and E. Kendy, 2005: Groundwater depletion: A global problem. Hydrogeol. J., 13, 317320, https://doi.org/10.1007/s10040-004-0411-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. NASA/TM-104606, Vol. 9, 60 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.

  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, T. J., K. W. Tate, D. Cao, and M. R. George, 2007: Juniper removal may not increase overall Klamath River Basin water yields. Calif. Agric., 61, 166171, https://doi.org/10.3733/ca.v061n04p166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, D. M. Mocko, and Y. Tian, 2013: Multiscale evaluation of the improvements in surface snow simulation through terrain adjustments to radiation. J. Hydrometeor., 14, 220232, https://doi.org/10.1175/JHM-D-12-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2016: Assimilation of gridded GRACE terrestrial water storage estimates in the North American land data assimilation system, 2016. J. Hydrometeor., 17, 19511972, https://doi.org/10.1175/JHM-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., S. Wang, D. M. Mocko, C. D. Peters-Lidard, and Y. Xia, 2017: Similarity assessment of land surface model outputs in the North American land data assimilation system. Water Resour. Res., 53, 89418965, https://doi.org/10.1002/2017WR020635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., T. Holmes, D. Mocko, S. Wang, and C. Peters-Lidard, 2018: Attribution of flux partitioning variations between land surface models over the continental U.S. Remote Sens., 10, 751, https://doi.org/10.3390/rs10050751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawston, P. M., J. A. Santanello, B. F. Zaitchik, and M. Rodell, 2015: Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts. J. Hydrometeor., 16, 11351154, https://doi.org/10.1175/JHM-D-14-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., and M. Rodell, 2015: Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J. Hydrol., 526, 7888, https://doi.org/10.1016/j.jhydrol.2014.09.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., M. Rodell, B. F. Zaitchik, R. H. Reichle, R. D. Koster, and T. M. van Dam, 2012: Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol., 446–447, 103115, https://doi.org/10.1016/j.jhydrol.2012.04.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., M. Rodell, and J. S. Famiglietti, 2015: Groundwater variability across temporal and spatial scales in the central and northeastern U.S. J. Hydrol., 525, 769780, https://doi.org/10.1016/j.jhydrol.2015.04.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., M. Rodell, J. Sheffield, E. Wood, and E. Sutanudjaja, 2019a: Long-term, non-anthropogenic groundwater storage changes simulated by three global-scale hydrological models. Sci. Rep., 9, 10746, https://doi.org/10.1038/s41598-019-47219-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., and Coauthors, 2019b: Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res., 55, 75647586, https://doi.org/10.1029/2018WR024618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., J. S. Famiglietti, P. J.-F. Yeh, and T. H. Syed, 2010: Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated baseflow data. Water Resour. Res., 46, W05517, https://doi.org/10.1029/2009WR007855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res., 109, D07S91, https://doi.org/10.1029/2003JD003517.

    • Search Google Scholar
    • Export Citation
  • Long, D., L. Longuevergne, and B. R. Scanlon, 2014: Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 11311151, https://doi.org/10.1002/2013WR014581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lv, Z., J. W. Pomeroy, and X. Fang, 2019: Evaluation of SNODAS snow water equivalent in western Canada and assimilation into a Cold Region Hydrological Model. Water Resour. Res., 55, 11 16611 187, https://doi.org/10.1029/2019WR025333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markovich, K. H., A. H. Manning, L. E. Condon, and J. C. McIntosh, 2019: Mountain-block recharge: A review of current understanding. Water Resour. Res., 55, 82788304, https://doi.org/10.1029/2019WR025676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and N. L. Miller, 2005: Development of a coupled land surface and groundwater model. J. Hydrometeor., 6, 233247, https://doi.org/10.1175/JHM422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., L. E. Condon, and S. J. Kollet, 2015: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev., 8, 923937, https://doi.org/10.5194/gmd-8-923-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and Coauthors, 2017: ParFlow user’s manual. Integrated Groundwater Modeling Center Rep. GWMI 2016-01, 154 pp., https://github.com/parflow/parflow/blob/v3.6.0/parflow-manual.pdf.

  • McMahon, P. B., L. N. Plummer, J. K. Böhlke, S. D. Shapiro, and S. R. Hinkle, 2011: A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol. J., 19, 779800, https://doi.org/10.1007/s10040-011-0722-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meixner, T., and Coauthors, 2016: Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol., 534, 124138, https://doi.org/10.1016/j.jhydrol.2015.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michael, H. A., A. E. Mulligan, and C. F. Harvey, 2005: Seasonal water exchange between aquifers and the coastal ocean. Nature, 436, 11451148, https://doi.org/10.1038/nature03935,436.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Y. Fan, 2012: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res., 117, D15113, https://doi.org/10.1029/2012JD017539.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Moeck, C., P. Brunner, and D. Hunkeler, 2016: The influence of model structure on groundwater recharge rates in climate-change impact studies. Hydrogeol. J., 24, 11711184, https://doi.org/10.1007/s10040-016-1367-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeck, C., J. von Freyberg, and M. Schirmer, 2018: Groundwater recharge predictions in contrasted climate: The effect of model complexity and calibration period on recharge rates. Environ. Modell. Software, 103, 7489, https://doi.org/10.1016/j.envsoft.2018.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeck, C., N. Grech-Cumbo, J. Podgorski, A. Bretzler, J. J. Gurdak, M. Berg, and M. Schirmer, 2020: A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Sci. Total Environ., 717, 137042, https://doi.org/10.1016/j.scitotenv.2020.137042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohan, C., A. W. Western, Y. Wei, and M. Saft, 2018: Predicting groundwater recharge for varying land cover and climate conditions - A global meta-study. Hydrol. Earth Syst. Sci., 22, 26892703, https://doi.org/10.5194/hess-22-2689-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohanty, B., and J. Zhu, 2007: Effective hydraulic parameters in horizontally and vertically heterogeneous soils for steady-state land–atmosphere interaction. J. Hydrometeor., 8, 715729, https://doi.org/10.1175/JHM606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, https://doi.org/10.1029/2010GL046230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nearing, G., D. Mocko, C. Peters-Lidard, S. Kumar, and Y. Xia, 2016: Benchmarking NLDAS-2 soil moisture and evapotranspiration to separate uncertainty contributions. J. Hydrometeor., 17, 745759, https://doi.org/10.1175/JHM-D-15-0063.1.

    • Search Google Scholar
    • Export Citation
  • Nie, W., B. F. Zaitchik, M. Rodell, S. Kumar, M. Anderson, and C. Hain, 2018: Groundwater withdrawals under drought: Reconciling GRACE and land surface models in the United States high plains aquifer. Water Resour. Res., 54, 52825299, https://doi.org/10.1029/2017WR022178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niraula, R., T. Meixner, H. Ajami, M. Rodell, D. Gochis, and C. L. Castro, 2017: Comparing potential recharge estimates from three land surface models across the western US. J. Hydrol., 545, 410423, https://doi.org/10.1016/j.jhydrol.2016.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa-Rodriguez, S., L.-P. Wang, P. Willems, and C. Onof, 2019: A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resour. Res., 55, 63566391, https://doi.org/10.1029/2018WR023332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, https://doi.org/10.1175/2009JHM1116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T., and Coauthors, 2016: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ., 184, 139152, https://doi.org/10.1016/j.rse.2016.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T. E., K. F. Dennehy, W. M. Alley, and W. L. Cunningham, 2008: Ground-water availability in the United States. USGS Circular, 70 pp., https://water.usgs.gov/watercensus/AdHocComm/Background/Ground-WaterAvailabilityintheUnitedStates.pdf.

    • Crossref
    • Export Citation
  • Reinecke, R., L. Foglia, S. Mehl, J. D. Herman, A. Wachholz, T. Trautmann, and P. Döll, 2019: Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization. Hydrol. Earth Syst. Sci., 23, 45614582, https://doi.org/10.5194/hess-23-4561-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitz, M., and W. E. Sanford, 2019: Modern monthly effective recharge maps for the conterminous U.S., 2003-2015. U.S. Geological Survey, accessed August 2020, https://doi.org/10.5066/P9NRVAQ5.

    • Crossref
    • Export Citation
  • Reitz, M., W. E. Sanford, G. B. Senay, and J. Cazenas, 2017a: Annual estimates of recharge, quick-flow runoff, and evapotranspiration for the contiguous U.S. using empirical regression equations. J. Amer. Water Resour. Assoc., 53, 961983, https://doi.org/10.1111/1752-1688.12546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitz, M., G. B. Senay, and W. E. Sanford, 2017b: Combining remote sensing and water-balance evapotranspiration estimates for the conterminous United States. Remote Sens., 9, 1181, https://doi.org/10.3390/rs9121181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitz, M., W. E. Sanford, G. B. Senay, and J. Cazenas, 2017c: Annual estimates of recharge, quick-flow runoff, and ET for the contiguous US using empirical regression equations, 2000-2013. U.S. Geological Survey, accessed August 2020, https://doi.org/10.5066/F7PN93P0.

    • Crossref
    • Export Citation
  • Richey, A. S., B. F. Thomas, M.-H. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson, and M. Rodell, 2015: Quantifying renewable groundwater stress with GRACE. Water Resour. Res., 51, 52175238, https://doi.org/10.1002/2015WR017349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robins, N. S., 1998: Recharge: The key to groundwater pollution and aquifer vulnerability. Groundwater Pollution, Aquifer Recharge and Vulnerability, N. S. Robins, Ed., Geological Society Special Publications, Vol. 130, Geological Society, 1–5.

    • Crossref
    • Export Citation
  • Rodell, M., P. R. Houser, A. A. Berg, and J. S. Famiglietti, 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146155, https://doi.org/10.1175/JHM414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. Chen, H. Kato, J. S. Famiglietti, J. Nigro, and C. R. Wilson, 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159166, https://doi.org/10.1007/s10040-006-0103-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, https://doi.org/10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., K. E. Keese, A. L. Flint, L. E. Flint, C. B. Gaye, W. M. Edmunds, and I. Simmers, 2006: Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Processes, 20, 33353370, https://doi.org/10.1002/hyp.6335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., C. C. Faunt, L. Longuevergne, R. C. Reedy, W. M. Alley, V. L. McGuire, and P. B. McMahon, 2012: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA, 109, 93209325, https://doi.org/10.1073/pnas.1200311109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J., V. Koren, and Q. Duan, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., Z.-L. Yang, R. E. Dickinson, C. R. Wilson, and G.-Y. Niu, 2010: Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information. J. Geophys. Res., 115, D10104, https://doi.org/10.1029/2009JD013035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sudicky, E. A., J. P. Jones, Y. J. Park, A. E. Brookfield, and D. Colautti, 2008: Simulating complex flow and transport dynamics in an integrated surface-subsurface modeling framework. Geosci. J., 12, 107122, https://doi.org/10.1007/s12303-008-0013-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, A. Y., R. Green, S. Swenson, and M. Rodell, 2012: Toward calibration of regional groundwater models using GRACE data. J. Hydrol., 422–423, 19, https://doi.org/10.1016/j.jhydrol.2011.10.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutanudjaja, E. H., and Coauthors, 2018: PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geosci. Model Dev., 11, 24292453, https://doi.org/10.5194/gmd-11-2429-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweetenham, M. G., R. M. Maxwell, and P. M. Santi, 2017: Assessing the timing and magnitude of precipitation-induced seepage into tunnels bored through fractured rock. Tunnelling Underground Space Technol., 65, 6275, https://doi.org/10.1016/j.tust.2017.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, R. G., and Coauthors, 2013: Ground water and climate change. Nat. Climate Change, 3, 322329, https://doi.org/10.1038/nclimate1744.

  • Tran, H., J. Zhang, J.-M. Cohard, L. E. Condon, and R. M. Maxwell, 2020: Simulating groundwater-streamflow connections in the upper Colorado River basin. Ground Water, 58, 392405, https://doi.org/10.1111/gwat.13000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. Van Beek, C. M. Van Kempen, J. W. Reckman, S. Vasak, and M. F. Bierkens, 2010: Global depletion of groundwater resources. Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J., and H. Guan, 2004: Mountain-block hydrology and mountain-front recharge. Groundwater Recharge in A Desert Environment: The Southwestern United States, F. M. Phillips, J. Hogan, and B. Scanlon, Eds., Wiley, 113–127.

    • Crossref
    • Export Citation
  • Winter, T. C., J. W. Harvey, O. Lehn Franke, and W. M. Alley, 1998: Ground water and surface water: A single resource. USGS Circular 1139, 79 pp., https://doi.org/10.3133/cir1139.

    • Crossref
    • Export Citation
  • Wu, W., M. A. Geller, and R. E. Dickinson, 2002: The response of soil moisture to long-term variability of precipitation. J. Hydrometeor., 3, 604613, https://doi.org/10.1175/1525-7541(2002)003<0604:TROSMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, https://doi.org/10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., J. Sheffield, M. Ek, J. Donga, N. Chaney, H. Wei, J. Meng, and E. Wood, 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, https://doi.org/10.1016/j.jhydrol.2014.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. Ek, Y. Wu, T. Ford, and S. M. Quiring, 2015: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 19621980, https://doi.org/10.1175/JHM-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., D. Mocko, M. Huang, B. Li, M. Rodell, K. E. Mitchell, X. Cai, and M. B. Ek, 2017: Comparison and assessment of three advanced land surface models in simulating terrestrial water storage components over the United States. J. Hydrometeor., 18, 625649, https://doi.org/10.1175/JHM-D-16-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., G. Zhang, X. Yin, Z. Liu, and Z. Huang, 2011: Study on capillary rise from hallow groundwater and critical water table depth of a saline-sodic soil in western Songnen plain of China. Environ. Earth Sci., 64, 21192126, https://doi.org/10.1007/s12665-011-1038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., M. Rodell, and R. H. Reichle, 2008: Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi River basin. J. Hydrometeor., 9, 535548, https://doi.org/10.1175/2007JHM951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., Y. Xia, B. Long, M. Hobbins, X. Zhao, C. Hain, Y. Li, and M. C. Anderson, 2020: Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: Implications for the next phase of NLDAS (NLDAS-Testbed) development. Agric. For. Meteor., 280, 107810, https://doi.org/10.1016/j.agrformet.2019.107810.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 637 637 103
Full Text Views 88 88 19
PDF Downloads 102 102 22

Groundwater Recharge Estimated by Land Surface Models: An Evaluation in the Conterminous United States

View More View Less
  • 1 ESSIC, University of Maryland, College Park, College Park, Maryland
  • 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 3 Science Applications International Corporation, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Estimating diffuse recharge of precipitation is fundamental to assessing groundwater sustainability. Diffuse recharge is also the process through which climate and climate change directly affect groundwater. In this study, we evaluated diffuse recharge over the conterminous United States simulated by a suite of land surface models (LSMs) that were forced using a common set of meteorological input data. Simulated annual recharge exhibited spatial patterns that were similar among the LSMs, with the highest values in the eastern United States and Pacific Northwest. However, the magnitudes of annual recharge varied significantly among the models and were associated with differences in simulated ET, runoff, and snow. Evaluation against two independent datasets did not answer the question of whether the ensemble mean performs the best, due to inconsistency between those datasets. The amplitude and timing of seasonal maximum recharge differed among the models, influenced strongly by model physics governing deep soil moisture drainage rates and, in cold regions, snowmelt. Evaluation using in situ soil moisture observations suggested that true recharge peaks 1–3 months later than simulated recharge, indicating systematic biases in simulating deep soil moisture. However, recharge from lateral flows and through preferential flows cannot be inferred from soil moisture data, and the seasonal cycle of simulated groundwater storage actually compared well with in situ groundwater observations. Long-term trends in recharge were not consistently correlated with either precipitation trends or temperature trends. This study highlights the need to employ dynamic flow models in LSMs, among other improvements, to enable more accurate simulation of recharge.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0130.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bailing Li, bailing.li@nasa.gov

Abstract

Estimating diffuse recharge of precipitation is fundamental to assessing groundwater sustainability. Diffuse recharge is also the process through which climate and climate change directly affect groundwater. In this study, we evaluated diffuse recharge over the conterminous United States simulated by a suite of land surface models (LSMs) that were forced using a common set of meteorological input data. Simulated annual recharge exhibited spatial patterns that were similar among the LSMs, with the highest values in the eastern United States and Pacific Northwest. However, the magnitudes of annual recharge varied significantly among the models and were associated with differences in simulated ET, runoff, and snow. Evaluation against two independent datasets did not answer the question of whether the ensemble mean performs the best, due to inconsistency between those datasets. The amplitude and timing of seasonal maximum recharge differed among the models, influenced strongly by model physics governing deep soil moisture drainage rates and, in cold regions, snowmelt. Evaluation using in situ soil moisture observations suggested that true recharge peaks 1–3 months later than simulated recharge, indicating systematic biases in simulating deep soil moisture. However, recharge from lateral flows and through preferential flows cannot be inferred from soil moisture data, and the seasonal cycle of simulated groundwater storage actually compared well with in situ groundwater observations. Long-term trends in recharge were not consistently correlated with either precipitation trends or temperature trends. This study highlights the need to employ dynamic flow models in LSMs, among other improvements, to enable more accurate simulation of recharge.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0130.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bailing Li, bailing.li@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 3.42 MB)
Save