• Brunke, M. A., and Coauthors, 2016: Implementing and evaluating variable soil thickness in the Community Land Model, version 4.5 (CLM4.5). J. Climate, 29, 34413461, https://doi.org/10.1175/JCLI-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., and Coauthors, 2018: Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ., 204, 931941, https://doi.org/10.1016/j.rse.2017.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, J. Qin, Q. Cui, H. Lu, Z. La, M. Han, and W. Tang, 2017: Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos., 122, 57805792, https://doi.org/10.1002/2016JD026388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, B. R., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, C., J. Xu, J. Zeng, K.-S. Chen, X. Bai, H. Lu, Q. Chen, and T. Zhao, 2018: Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens., 10, 33, https://doi.org/10.3390/rs10010033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Guo, and X. Gao, 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5, 10111033, https://doi.org/10.1175/JHM-388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El Hajj, M., and Coauthors, 2018: Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 soil moisture products at sites in southwestern France. Remote Sens., 10, 569, https://doi.org/10.3390/rs10040569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2004: The Hydrosphere State (HYDROS) satellite mission: An Earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens., 42, 21842195, https://doi.org/10.1109/TGRS.2004.834631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010a: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow, 2010b: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840, https://doi.org/10.1175/2010JHM1223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson, 2008: Field observations of soil moisture variability across scales. Water Resour. Res., 44, W01423, https://doi.org/10.1029/2006WR005804.

    • Search Google Scholar
    • Export Citation
  • Goldstein, M., and J. Rougier, 2006: Bayes linear calibrated prediction for complex systems. J. Amer. Stat. Assoc., 101, 11321143, https://doi.org/10.1198/016214506000000203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, Z. Z. Hu, X. Gao, and M. Zhao, 2006: Evaluation of the second global soil wetness project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, https://doi.org/10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Huntzinger, D. N., and Coauthors, 2013: The North American carbon program multi-scale synthesis and terrestrial model intercomparison project—Part 1: Overview and experimental design. Geosci. Model Dev., 6, 21212133, https://doi.org/10.5194/gmd-6-2121-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P., and I. Harris, 2013: CRU TS3. 21: Climatic Research Unit (CRU) Time-Series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data Centre, https://doi.org/10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, H., M. Rodell, F. Beyrich, H. Cleugh, E. van Gorsel, H. Liu, and T. P. Meyers, 2007: Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites. J. Meteor. Soc. Japan, 85A, 187204, https://doi.org/10.2151/jmsj.85A.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, M., C. Anderson, A. O’Hagan, M. Lomas, I. Woodward, J. Gosling, and A. Heinemeyer, 2008: Quantifying uncertainty in the biospheric carbon flux for England and Wales. J. Roy. Stat. Soc., 171A, 109135, https://doi.org/10.1111/j.1467-985X.2007.00489.x.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2012: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 50, 13841403, https://doi.org/10.1109/TGRS.2012.2184548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., B. P. Mohanty, and Y. Shin, 2015: Effective soil moisture estimate and its uncertainty using multimodel simulation based on Bayesian Model Averaging. J. Geophys. Res. Atmos., 120, 80238042, https://doi.org/10.1002/2014JD022905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2018: Technical description of version 5.0 of the Community Land Model (CLM). NCAR, 350 pp., https://escomp.github.io/ctsm-docs/doc/build/html/tech_note/index.html.

  • Lawrence, D. M., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L. A., K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen, 2011: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmos. Chem. Phys., 11, 12 25312 273, https://doi.org/10.5194/acp-11-12253-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L. A., K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw, 2013: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys., 13, 88798914, https://doi.org/10.5194/acp-13-8879-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2018: Global carbon budget 2017. Earth Syst. Sci. Data, 10, 405448, https://doi.org/10.5194/essd-10-405-2018.

  • Li, J., and Coauthors, 2013: Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci., 17, 32793293, https://doi.org/10.5194/hess-17-3279-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeppky, J., J. Sack, and W. Welch, 2009: Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51, 366376, https://doi.org/10.1198/TECH.2009.08040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, M., W. Conover, and R. Beckman, 1979: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239245, https://doi.org/10.2307/1268522.

    • Search Google Scholar
    • Export Citation
  • Montzka, C., H. R. Bogena, M. Zreda, A. Monerris, R. Morrison, S. Muddu, and H. Vereecken, 2017: Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes. Remote Sens., 9, 103, https://doi.org/10.3390/rs9020103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229, https://doi.org/10.1109/TGRS.2002.808243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Hagan, A., 2006: Bayesian analysis of computer code outputs: A tutorial. Reliab. Eng. Syst. Saf., 91, 12901300, https://doi.org/10.1016/j.ress.2005.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish, 2018: SMAP L3 radiometer global daily 36 km EASE-grid soil moisture, version 5. NASA National Snow and Ice Data Center, accessed 1 May 2019, https://doi.org/10.5067/ZX7YX2Y2LHEB.

    • Crossref
    • Export Citation
  • Parinussa, R. M., T. R. H. Holmes, N. Wanders, W. A. Dorigo, and R. A. M. de Jeu, 2015: A preliminary study toward consistent soil moisture from AMSR2. J. Hydrometeor., 16, 932947, https://doi.org/10.1175/JHM-D-13-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, F., M. Mu, and G. Sun, 2020: Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau. Tellus, 72A, 116, https://doi.org/10.1080/16000870.2019.1704963.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, https://doi.org/10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosero, E., Z.-L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and G.-Y. Niu, 2010: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J. Geophys. Res., 115, D03106, https://doi.org/10.1029/2009JD012035.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B., and Coauthors, 2008: Constraints on model response to greenhouse gas forcing and the role of subgrid-scale processes. J. Climate, 21, 23842400, https://doi.org/10.1175/2008JCLI1869.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA natural resources conservation service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2014: A drought monitoring and forecasting system for Sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., 95, 861882, https://doi.org/10.1175/BAMS-D-12-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., and W. J. Merryfield, 2018: Initialization and potential predictability of soil moisture in the Canadian seasonal to interannual prediction system. J. Climate, 31, 52055224, https://doi.org/10.1175/JCLI-D-17-0707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, G., F. Peng, and M. Mu, 2017: Uncertainty assessment and sensitivity analysis of soil moisture based on model parameter errors – results from four regions in China. J. Hydrol., 555, 347360, https://doi.org/10.1016/j.jhydrol.2017.09.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and D. M. Lawrence, 2014: Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res. Atmos., 119, 10 29910 312, https://doi.org/10.1002/2014JD022314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., F. Doblas-Reyes, G. Balsamo, R. D. Koster, S. I. Seneviratne, and H. Camargo Jr., 2012: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dyn., 38, 349362, https://doi.org/10.1007/s00382-010-0956-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., and Coauthors, 2013: The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteor. Z., 22, 533, https://doi.org/10.1127/0941-2948/2013/0399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanders, N., D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens, 2014: The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol. Earth Syst. Sci., 18, 23432357, https://doi.org/10.5194/hess-18-2343-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, G. R., J. Zhuang, K. Nakayama, and Y. Jin, 2007: Root water uptake and profile soil water as affected by vertical root distribution. Plant Ecol., 189, 1530, https://doi.org/10.1007/s11258-006-9163-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and M. Decker, 2009: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table. J. Hydrometeor., 10, 308319, https://doi.org/10.1175/2008JHM1011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., T. Zhang, P. Zhou, Y. Shao, and S. Gao, 2017: Validation analysis of SMAP and AMSR2 soil moisture products over the United States using ground-based measurements. Remote Sens., 9, 104, https://doi.org/10.3390/rs9020104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zreda, M., D. Desilets, T. P. A. Ferre, and R. L. Scott, 2008: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett., 35, L21402, https://doi.org/10.1029/2008GL035655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zreda, M., W. J. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem, 2012: COSMOS: The COsmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci., 16, 40794099, https://doi.org/10.5194/hess-16-4079-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 105 105 42
Full Text Views 29 29 10
PDF Downloads 37 37 12

Emulation of Community Land Model Version 5 (CLM5) to Quantify Sensitivity of Soil Moisture to Uncertain Parameters

View More View Less
  • 1 Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 2 Department of Environmental Sciences, Emory University, Atlanta, Georgia
© Get Permissions
Restricted access

Abstract

Land surface models (LSMs) are limited in their ability to reproduce observed soil moisture partially due to uncertainties in model parameters. Here we conduct a variance-based sensitivity analysis to quantify the relative contribution of different model parameters and their interactions to the uncertainty in the surface and root-zone soil moisture in the Community Land Model 5.0 (CLM5). We focus on soil-texture-related parameters (porosity, saturated matric potential, saturated hydraulic conductivity, shape parameter of soil-water retention model) and organic matter fraction. A Gaussian process emulator is constructed based on CLM5 simulations and used to estimate soil moisture across the five-dimensional parameter space for sensitivity analysis. The procedure is demonstrated for four seasons across various U.S. sites of distinct soil and vegetation types. We find that the emulator captures well the CLM5 behavior across the parameter space for different soil textures and seasons. The uncertainties of surface and root-zone soil moisture are dominated by the uncertainties in porosity and shape parameter with negligible parametric interactions. However, relative importance of porosity versus shape parameter varies with soil textures (sites), depths (surface versus root zone), and seasons. At most of the sites, surface soil moisture uncertainty is attributed largely to shape parameter uncertainty, while porosity uncertainty is more important for the root-zone soil moisture uncertainty. All individual parameter and interaction effects demonstrate less variability across different soil textures and seasons for root zone than for surface soil moisture. These results provide scientific guidance to prioritize reducing the uncertainty of sensitive parameters for improving soil moisture modeling with CLM.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0043.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang Gao, xgao304@mit.edu

Abstract

Land surface models (LSMs) are limited in their ability to reproduce observed soil moisture partially due to uncertainties in model parameters. Here we conduct a variance-based sensitivity analysis to quantify the relative contribution of different model parameters and their interactions to the uncertainty in the surface and root-zone soil moisture in the Community Land Model 5.0 (CLM5). We focus on soil-texture-related parameters (porosity, saturated matric potential, saturated hydraulic conductivity, shape parameter of soil-water retention model) and organic matter fraction. A Gaussian process emulator is constructed based on CLM5 simulations and used to estimate soil moisture across the five-dimensional parameter space for sensitivity analysis. The procedure is demonstrated for four seasons across various U.S. sites of distinct soil and vegetation types. We find that the emulator captures well the CLM5 behavior across the parameter space for different soil textures and seasons. The uncertainties of surface and root-zone soil moisture are dominated by the uncertainties in porosity and shape parameter with negligible parametric interactions. However, relative importance of porosity versus shape parameter varies with soil textures (sites), depths (surface versus root zone), and seasons. At most of the sites, surface soil moisture uncertainty is attributed largely to shape parameter uncertainty, while porosity uncertainty is more important for the root-zone soil moisture uncertainty. All individual parameter and interaction effects demonstrate less variability across different soil textures and seasons for root zone than for surface soil moisture. These results provide scientific guidance to prioritize reducing the uncertainty of sensitive parameters for improving soil moisture modeling with CLM.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0043.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang Gao, xgao304@mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.25 MB)
Save