• Adikari, Y., and J. Yoshitani, 2009: Global trends in water related disasters: An insight for policymakers. International Centre for Water Hazard and Risk Management, UNESCO, 24 pp., https://unesdoc.unesco.org/ark:/48223/pf0000181793.

  • American Meteorological Society, 2020: Thiessen polygon method. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Thiessen_polygon_method.

  • Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, https://doi.org/10.1175/2007JAMC1611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Band, L. E., T. Hwang, T. C. Hales, J. Vose, and C. Ford, 2012: Ecosystem processes at the watershed scale: Mapping and modeling ecohydrological controls of landslides. Geomorphology, 137, 159167, https://doi.org/10.1016/j.geomorph.2011.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P., P. A. Troch, M. Schaffner, C. Unkrich, and D. Goodrich, 2014: An all-season flash flood forecasting system for real-time operations. Bull. Amer. Meteor. Soc., 95, 399407, https://doi.org/10.1175/BAMS-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, https://doi.org/10.5194/npg-20-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CISL, 2019: Cheyenne: HPE/SGI ICE XA System (University Community Computing). NCAR, https://doi.org/10.5065/D6RX99HX.

    • Crossref
    • Export Citation
  • Clark, M. P., and et al. , 2008: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colautti, F., 2007: Río Tercero: cuál es el riesgo de inundación. Lavoz.com.ar, 25 January, http://archivo.lavoz.com.ar/07/01/25/secciones/zonacentro/nota.asp?nota_id=38409.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, M. E., and et al. , 2016: Application of the WRFLETKF data assimilation system over southern South America: Sensitivity to model physics. Wea. Forecasting, 31, 217236, https://doi.org/10.1175/WAF-D-14-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenicia, F., D. Kavetski, and H. H. G. Savenije, 2011: Elements of a flexible approach for conceptual hydrological modeling. 1: Motivation and theoretical development. Water Resour. Res., 47, W11510, https://doi.org/10.1029/2010WR010174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fersch, B., A. Senatore, B. Adler, J. Arnault, M. Mauder, K. Schneider, I. Völksch, and H. Kunstmann, 2020: 2019: High-resolution fully coupled atmospheric–hydrological modeling: A cross-compartment regional water and energy cycle evaluation. Hydrol. Earth Syst. Sci., 24, 24572481, https://doi.org/10.5194/hess-24-2457-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. G., R. Ing, S. Von Allmen, and R. Wood, 1983: Mortality from flash floods: A review of the National Weather Service reports, 1969–81. Public Health Rep., 98 (6), 584588.

    • Search Google Scholar
    • Export Citation
  • Furnari, L., G. Mendicino, and A. Senatore, 2020: Hydrometeorological ensemble forecast of a highly localized convective event in the Mediterranean. Water, 12, 1545, https://doi.org/10.3390/w12061545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., and M. D. Hudlow, 1984: Quantitative precipitation forecast techniques for use in hydrologic forecasting. Bull. Amer. Meteor. Soc., 65, 11861200, https://doi.org/10.1175/1520-0477(1984)065<1186:QPFTFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and F. Chen, 2003: Hydrological enhancements to the community Noah land surface model. NCAR Scientific Tech. Rep. TN-454+STR, 77 pp., https://doi.org/10.5065/D60P0X00.

    • Crossref
    • Export Citation
  • Gochis, D. J., W. Yu, K. Sampson, A. Dugger, J. McCreight, Y. Zhang, and K. Ikeda, 2015: Multi-scale model analysis and hindcast of the 2013 Colorado Flood. EGU General Assembly, Vienna, Austria, European Geophys. Union, 7531.

  • Gochis, D. J., and et al. , 2018: The WRF-Hydro modeling system technical description (version 5.0). NCAR Tech. Note, 107 pp., https://ral.ucar.edu/sites/default/files/public/WRF-HydroV5TechnicalDescription.pdf.

  • Gruntfest, E., and C. J. Huber, 1991: Toward a comprehensive national assessment of flash flooding in the United States. Episodes, 14, 2634.

    • Search Google Scholar
    • Export Citation
  • Herrero, H. S., J. M. D. Lozada, C. M. García, R. N. Szupiany, J. Best, and M. Pagot, 2018: The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing. Geomorphology, 304, 99112, https://doi.org/10.1016/j.geomorph.2017.12.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, https://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lange, J., and C. Leibundgut, 2000: Non-calibrated arid zone rainfall-runoff modelling. IAHS Publ., 261, 455, http://hydrologie.org/redbooks/a261/iahs_261_0045.pdf 2.

    • Search Google Scholar
    • Export Citation
  • Le Coz, J., M. Jodeau, A. Hauet, B. Marchand, and R. Boursicaud, 2014: Image-based velocity and discharge measurements in field and laboratory river engineering studies using the free FUDAA-LSPIV software. River Flow 2014, A. J. Schleiss et al., Eds., CRC Press, 7 pp.

    • Crossref
    • Export Citation
  • Li, Y., D. Ryu, A. W. Western, and Q. Wang, 2015: Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme. Water Resour. Res., 51, 32383258, https://doi.org/10.1002/2014WR016667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., L. J. Hopper, Z.-L. Yang, M. Lenz, and J. W. Zeitler, 2018a: Insights into hydrometeorological factors constraining flood prediction skill during the May and October 2015 Texas Hill Country flood events. J. Hydrometeor., 19, 13391361, https://doi.org/10.1175/JHM-D-18-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., M. A. Rajib, Z.-L. Yang, M. Somos-Valenzuela, V. Merwade, D. R. Maidment, Y. Wang, and L. Chen, 2018b: Spatiotemporal evaluation of simulated evapotranspiration and streamflow over Texas using the WRF-Hydro-RAPID modeling framework. J. Amer. Water Resour. Assoc., 54, 4054, https://doi.org/10.1111/1752-1688.12585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaud, J., and S. Sorooshian, 1994: Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed. Water Resour. Res., 30, 593605, https://doi.org/10.1029/93WR03218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and M. Kunii, 2011: The local ensemble transform Kalman filter with the Weather Research and Forecasting Model: Experiments with real observations. Pure Appl. Geophys., 169, 321333, https://doi.org/10.1007/s00024-011-0373-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R., and R. Clarke, 1981: A distribution function approach to rainfall runoff modeling. Water Resour. Res., 17, 13671382, https://doi.org/10.1029/WR017i005p01367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, https://doi.org/10.13031/2013.23153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, D. S., C. R. Wagner, M. S. Rehmel, K. A. Oberg, and F. Rainville, 2013: Measuring discharge with acoustic Doppler current profilers from a moving boat. USGS Techniques and Methods Rep. 3-A22, 95 pp., https://doi.org/10.3133/tm3A22.

    • Crossref
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Cordoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muste, M., I. Fujita, and A. Hauet, 2008: Large-scale particle image velocimetry for measurements in riverine environments. Water Resour. Res., 44, W00D19, https://doi.org/10.1029/2008WR006950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naabil, E., B. Lamptey, J. Arnault, A. Olufayo, and H. Kunstmann, 2017: Water resources management using the WRF-Hydro modelling system: Case-study of the Tono Dam in West Africa. J. Hydrol. Reg. Stud., 12, 196209, https://doi.org/10.1016/j.ejrh.2017.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models, Part I – A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S., 2016: RELAMPAGO white paper. 6 pp., https://drive.google.com/file/d/0B6Z5EcBIjxY2dWo4TFFIRWZMMTg/view.

  • Niu, G. Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noji, E. K., and C. Y. Lee, 2005: Disaster preparedness. Environmental Health: From Global to Local, 1st ed. H. Frumkin, Ed., Jossey-Bass Publisher, 745–780.

  • Norbiato, D., M. Borga, S. Degli Esposti, E. Gaume, and S. Anquetin, 2008: Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. J. Hydrol., 362, 274290, https://doi.org/10.1016/j.jhydrol.2008.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, S., H.-I. Chang, C. L. Castro, and F. Dominguez, 2019: Credibility of convection-permitting modeling to improve seasonal precipitation forecasting in the southwestern United States. Front Earth Sci., 7, 11, https://doi.org/10.3389/feart.2019.00011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patalano, A., C. García, and A. Rodriguez, 2017: Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface particle image velocimetry (PIV) and particle tracking velocimetry (PTV). Comput. Geosci., 109, 323330, https://doi.org/10.1016/j.cageo.2017.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and et al. , 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rakovec, O., A. H. Weerts, J. Sumihar, and R. Uijlenhoet, 2015: Operational aspects of asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci., 19, 29112924, https://doi.org/10.5194/hess-19-2911-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, and R. A. Houze Jr., 2016: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, https://doi.org/10.1175/JHM-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, https://doi.org/10.1016/j.jhydrol.2007.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozalis, S., E. Morin, Y. Yair, and C. Price, 2010: Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol., 394, 245255, https://doi.org/10.1016/j.jhydrol.2010.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y., Y. J. Lim, H. S. Ji, H. H. Park, E. C. Chang, and B. J. Kim, 2017: Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 53, 421430, https://doi.org/10.1007/s13143-017-0045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and C. Saulo, 2002: Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res., 107, 4816, https://doi.org/10.1029/2001JD001315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauer, V. B., and D. P. Turnipseed, 2010: Stage measurement at gaging stations. USGS Techniques and Methods Rep. 3-A7, 45 pp., https://doi.org/10.3133/tm3A7.

    • Crossref
    • Export Citation
  • Saulo, A. C., M. E. Seluchi, and M. Nicolini, 2004: A case study of a Chaco low-level jet event. Mon. Wea. Rev., 132, 26692683, https://doi.org/10.1175/MWR2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., J. Ruiz, and Y. G. Skabar, 2007: Synergism between the low-level jet and organized convection at its exit region. Mon. Wea. Rev., 135, 13101326, https://doi.org/10.1175/MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2011: Global Precipitation Analysis Products of the GPCC. Global Precipitation Climatology Centre, DWD, 13 pp., https://www.dwd.de/EN/ourservices/gpcc/reports_publications/GPCC_intro_products_2011.pdf?__blob=publicationFile&v=3.

  • Senatore, A., G. Mendicino, D. J. Gochis, W. Yu, D. Yates, and H. Kunstmann, 2015: Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst., 7, 16931715, https://doi.org/10.1002/2015MS000510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senatore, A., L. Furnari, and G. Mendicino, 2020: Impact of high-resolution sea surface temperature presentation on the forecast of small Mediterranean catchments’ hydrological responses to heavy precipitation. Hydrol. Earth Syst. Sci., 24, 269291, https://doi.org/10.5194/hess-24-269-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D. J., V. Koren, and N. Cajina, 2003: Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting. J. Hydrometeor., 4, 627641, https://doi.org/10.1175/1525-7541(2003)004<0627:RVAOHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and et al. , 2003: IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J., 48, 857880, https://doi.org/10.1623/hysj.48.6.857.51421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, M. B., and et al. , 2012: Results of the DMIP 2 Oklahoma experiments. J. Hydrol., 418419, 1748, https://doi.org/10.1016/j.jhydrol.2011.08.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, J., and A. P. Barros, 2013: Prospects for flash flood forecasting in mountainous regions—An investigation of Tropical Storm Fay in the southern Appalachians. J. Hydrol., 506, 6989, https://doi.org/10.1016/j.jhydrol.2013.02.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, J., D. Wu, J. Gourley, S. Q. Zhang, W. Crow, C. Peters-Lidard, and A. P. Barros, 2016: Operational hydrological forecasting during the IPHEx-IOP campaign–Meet the challenge. J. Hydrol., 541, 434456, https://doi.org/10.1016/j.jhydrol.2016.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarek, M., F. P. Brissette, and R. Arsenault, 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modeling over North-America. Hydrol. Earth Syst. Sci., 24, 25272544, https://doi.org/10.5194/hess-24-2527-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree × 0.25 degree V7 (TRMM_3B42). GES DISC, accessed 16 May 2020, https://doi.org/10.5067/TRMM/TMPA/3H/7.

    • Crossref
    • Export Citation
  • Varlas, G., and et al. , 2019: A multi-platform hydrometeorological analysis of the flash flood event of 15 November 2017 in Attica, Greece. Remote Sens., 11, 45, https://doi.org/10.3390/rs11010045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidal, L., 2014: Convección extrema sobre Sudamérica: estructura interna, ciclos de vida e influencia de la topografía en la iniciación. PhD. dissertation, Universidad de Buenos Aires, 275 pp.

  • Viterbo, F., and et al. , 2020: A multiscale, hydrometeorological forecast evaluation of national water model forecasts of the May 2018 Ellicott City, Maryland, flood. J. Hydrometeor., 21, 475499, https://doi.org/10.1175/JHM-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Forecast verification. Statistical Methods in the Atmospheric Sciences, 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 301–394.

    • Crossref
    • Export Citation
  • Yucel, I., A. Onen, K. K. Yilmaz, and D. J. Gochis, 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol., 523, 4966, https://doi.org/10.1016/j.jhydrol.2015.01.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 971 971 83
Full Text Views 262 262 17
PDF Downloads 286 286 21

Hydrometeorological Observations and Modeling of an Extreme Rainfall Event Using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 CONICET, Servicio Meteorológico Nacional, Buenos Aires, Argentina
  • | 3 Institute for Advanced Studies for Engineering and Technology (IDIT CONICET-UNC) and Exact, Physical and Natural Sciences College, National University of Córdoba (FCEFyN-UNC), Córdoba, Argentina
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Some of the most intense convective storms on Earth initiate near the Sierras de Córdoba mountain range in Argentina. The goal of the RELAMPAGO field campaign was to observe these intense convective storms and their associated impacts. The intense observation period (IOP) occurred during November–December 2018. The two goals of the hydrometeorological component of RELAMPAGO IOP were 1) to perform hydrological streamflow and meteorological observations in previously ungauged basins and 2) to build a hydrometeorological modeling system for hindcast and forecast applications. During the IOP, our team was able to construct the stage–discharge curves in three basins, as hydrological instrumentation and personnel were successfully deployed based on RELAMPAGO weather forecasts. We found that the flood response time in these river locations is typically between 5 and 6 h from the peak of the rain event. The satellite-observed rainfall product IMERG-Final showed a better representation of rain gauge–estimated precipitation, while IMERG-Early and IMERG-Late had significant positive bias. The modeling component focuses on the 48-h simulation of an extreme hydrometeorological event that occurred on 27 November 2018. Using the Weather Research and Forecasting (WRF) atmospheric model and its hydrologic component WRF-Hydro as an uncoupled hydrologic model, we developed a system for hindcast, deterministic forecast, and a 60-member ensemble forecast initialized with regional-scale atmospheric data assimilation. Critically, our results highlight that streamflow simulations using the ensemble forecasting with data assimilation provide realistic flash flood forecast in terms of timing and magnitude of the peak. Our findings from this work are being used by the water managers in the region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0133.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu

Abstract

Some of the most intense convective storms on Earth initiate near the Sierras de Córdoba mountain range in Argentina. The goal of the RELAMPAGO field campaign was to observe these intense convective storms and their associated impacts. The intense observation period (IOP) occurred during November–December 2018. The two goals of the hydrometeorological component of RELAMPAGO IOP were 1) to perform hydrological streamflow and meteorological observations in previously ungauged basins and 2) to build a hydrometeorological modeling system for hindcast and forecast applications. During the IOP, our team was able to construct the stage–discharge curves in three basins, as hydrological instrumentation and personnel were successfully deployed based on RELAMPAGO weather forecasts. We found that the flood response time in these river locations is typically between 5 and 6 h from the peak of the rain event. The satellite-observed rainfall product IMERG-Final showed a better representation of rain gauge–estimated precipitation, while IMERG-Early and IMERG-Late had significant positive bias. The modeling component focuses on the 48-h simulation of an extreme hydrometeorological event that occurred on 27 November 2018. Using the Weather Research and Forecasting (WRF) atmospheric model and its hydrologic component WRF-Hydro as an uncoupled hydrologic model, we developed a system for hindcast, deterministic forecast, and a 60-member ensemble forecast initialized with regional-scale atmospheric data assimilation. Critically, our results highlight that streamflow simulations using the ensemble forecasting with data assimilation provide realistic flash flood forecast in terms of timing and magnitude of the peak. Our findings from this work are being used by the water managers in the region.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0133.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 814 KB)
Save