• Berbery, E. H., and V. R. Barros, 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630645, https://doi.org/10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, https://doi.org/10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalcanti, I., and et al. , 2015: Precipitation extremes over La Plata Basin – Review and new results from observations and climate simulations. J. Hydrol., 523, 211230, https://doi.org/10.1016/j.jhydrol.2015.01.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chug, D., and F. Dominguez, 2019: Isolating the observed influence of vegetation variability on the climate of La Plata River basin. J. Climate, 32, 44734490, https://doi.org/10.1175/JCLI-D-18-0677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206, https://doi.org/10.1175/JCLI3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017a: ERA5: Fifth generation xof ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 26 July 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Copernicus Climate Change Service, 2017b: ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service Climate Data Store, accessed 26 July 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Danabasoglu, G., and et al. , 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., 2016: eofs: A library for EOF analysis of meteorological, oceanographic, and climate data. J. Open Source Software, 4, e14, https://doi.org/10.5334/JORS.122.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, and E. R. Vivoni, 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Climate, 21, 51875203, https://doi.org/10.1175/2008JCLI1760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2016: AQUASTAT transboundary river basin overview – La Plata. Food and Agriculture Organization of the United Nations Tech. Rep., 15 pp., https://www.fao.org/3/CA2141EN/ca2141en.pdf.

  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, https://doi.org/10.5194/hess-19-3617-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, J. A., R. C. Ruscica, and C. G. Menéndez, 2020: Warm-season precipitation drivers in northeastern Argentina: Diurnal cycle of the atmospheric moisture balance and land–atmosphere coupling. Int. J. Climatol., 41, E768E778, https://doi.org/10.1002/joc.6724.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015a: MERRA-2 tavg1_2d_flx_nx: 2d, 1-hourly, time-averaged, single-level, assimilation, surface flux diagnostics v5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 12 June 2018, https://doi.org/10.5067/7MCPBJ41Y0K6.

    • Crossref
    • Export Citation
  • GMAO, 2015b: MERRA-2 tavg1_2d_lnd_nx: 2d, 1-hourly, time-averaged, single-level, assimilation, land surface diagnostics v5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 12 June 2018, https://doi.org/10.5067/RKPHT8KC1Y1T.

    • Crossref
    • Export Citation
  • Grimm, A. M., 2011: Interannual climate variability in South America: Impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environ. Res. Risk Assess., 25, 537554, https://doi.org/10.1007/s00477-010-0420-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and R. G. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 15891609, https://doi.org/10.1175/2008JCLI2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., J. S. Pal, and F. Giorgi, 2007: Connection between spring conditions and peak summer monsoon rainfall in South America: Role of soil moisture, surface temperature, and topography in eastern Brazil. J. Climate, 20, 59295945, https://doi.org/10.1175/2007JCLI1684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30, 1241, https://doi.org/10.1029/2002GL016571.<

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land–atmosphere feedback involving planetary wave structures. J. Climate, 27, 92909301, https://doi.org/10.1175/JCLI-D-14-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J., and et al. , 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, https://doi.org/10.1002/joc.2254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata river basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: Climate prediction. Assessment of Intraseasonal to Interannual Climate Prediction and Predictability, The National Academies Press, 21–53, https://doi.org/10.17226/12878.

    • Crossref
    • Export Citation
  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and D. J. Erickson, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2, 13621380, https://doi.org/10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruscica, R., C. G. Menéndez, and A. Sörensson, 2016: Land surface–atmosphere interaction in future South American climate using a multi-model ensemble. Atmos. Sci. Lett., 17, 141147, https://doi.org/10.1002/asl.635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2014: Hydrological links in Southeastern South America: Soil moisture memory and coupling within a hot spot. Int. J. Climatol., 34, 36413653, https://doi.org/10.1002/joc.3930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2015: Pathways between soil moisture and precipitation in southeastern South America. Atmos. Sci. Lett., 16, 267272, https://doi.org/10.1002/asl2.552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and et al. , 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, C., L. Ferreira, J. Nogués-Paegle, M. Seluchi, and J. Ruiz, 2010: Land–atmosphere interactions during a northwestern Argentina low event. Mon. Wea. Rev., 138, 24812498, https://doi.org/10.1175/2010MWR3227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, https://doi.org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and C. G. Menéndez, 2011: Summer soil-precipitation coupling in South America. Tellus, 63A, 5668, https://doi.org/10.1111/j.1600-0870.2010.00468.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spennemann, P., M. Salvia, R. Ruscica, A. Sörensson, F. Grings, and H. Karszenbaum, 2018: Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. Int. J. Appl. Earth Obs. Geoinf., 64, 96103, https://doi.org/10.1016/j.jag.2017.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spennemann, P. C., and A. C. Saulo, 2015: An estimation of the land-atmosphere coupling strength in South America using the global land data assimilation system. Int. J. Climatol., 35, 41514166, https://doi.org/10.1002/joc.4274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and M. J. Fennessy, 1984: Influence of evaporation in semi-arid regions on the July circulation: A numerical study. J. Climatol., 4, 383398, https://doi.org/10.1002/joc.3370040404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 45254545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and et al. , 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Principal component (EOF) analysis. Statistical Methods in the Atmospheric Sciences, D. S. Wilks, Ed., International Geophysics, Vol. 100, Academic Press, 519–562, https://doi.org/10.1016/B978-0-12-385022-5.00012-9.

    • Crossref
    • Export Citation
  • Yang, Z., and F. Dominguez, 2019: Investigating land surface effects on the moisture transport over South America with a moisture tagging model. J. Climate, 32, 66276644, https://doi.org/10.1175/JCLI-D-18-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 244 244 20
Full Text Views 65 65 11
PDF Downloads 77 77 17

Impacts of Large-Scale Soil Moisture Anomalies on the Hydroclimate of Southeastern South America

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The La Plata basin (LPB), located in southeastern South America (SESA), is a region of significant socioeconomic importance, particularly for agriculture. This area of South America exhibits strong land–atmosphere coupling in the warm season. In this work, we evaluate the impact of large-scale soil moisture (SM) anomalies on regional-scale atmospheric conditions. Multivariate empirical orthogonal function (EOF) analysis is used to extract the dominant modes of joint variability of monthly averaged root-zone SM and 1-month-lagged precipitation from atmospheric reanalyses. We find that the dominant EOF pattern is consistent with a positive correlation between antecedent SM and precipitation, while the second dominant EOF pattern is consistent with a negative correlation between these variables. To evaluate causality, the effects of large-scale SM anomalies on atmospheric variables are examined using the Community Earth System Model (CESM). CESM simulations suggest that anomalously dry SM is initially collocated with decreased precipitation. Subsequent changes in the atmospheric circulation associated with a thermal low draw moisture into the region, eventually promoting increased precipitation. This study investigates the pathways through which SM anomalies modulate precipitation in this region. For this reason, this study has potential atmospheric prediction applications that could benefit the population and the socioeconomic well-being of this important region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu

Abstract

The La Plata basin (LPB), located in southeastern South America (SESA), is a region of significant socioeconomic importance, particularly for agriculture. This area of South America exhibits strong land–atmosphere coupling in the warm season. In this work, we evaluate the impact of large-scale soil moisture (SM) anomalies on regional-scale atmospheric conditions. Multivariate empirical orthogonal function (EOF) analysis is used to extract the dominant modes of joint variability of monthly averaged root-zone SM and 1-month-lagged precipitation from atmospheric reanalyses. We find that the dominant EOF pattern is consistent with a positive correlation between antecedent SM and precipitation, while the second dominant EOF pattern is consistent with a negative correlation between these variables. To evaluate causality, the effects of large-scale SM anomalies on atmospheric variables are examined using the Community Earth System Model (CESM). CESM simulations suggest that anomalously dry SM is initially collocated with decreased precipitation. Subsequent changes in the atmospheric circulation associated with a thermal low draw moisture into the region, eventually promoting increased precipitation. This study investigates the pathways through which SM anomalies modulate precipitation in this region. For this reason, this study has potential atmospheric prediction applications that could benefit the population and the socioeconomic well-being of this important region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Francina Dominguez, francina@illinois.edu
Save