• Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Proc. Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

  • Bastola, S., and V. Misra, 2013: Sensitivity of hydrological simulations of southeastern United States watersheds to temporal aggregation of rainfalls. J. Hydrometeor., 14, 13341344, https://doi.org/10.1175/JHM-D-12-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhardwaj, A., and V. Misra, 2019: The role of air-sea coupling in the downscaled hydroclimate projection over Peninsular Florida and the West Florida Shelf. Climate Dyn., 53, 29312947, https://doi.org/10.1007/s00382-019-04669-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp., https://ntrs.nasa.gov/search.jsp?R=19950009331.

  • Chou, M.-D., and K-T. Lee, 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 12031208, https://doi.org/10.1175/1520-0469(1996)053<1203:PFTAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S., K. Yoshimura, and H. Li, 2016: Historical dynamical downscaling for East Asia with the Atmosphere and Ocean Coupled Regional Model. J. Meteor. Soc. Japan, 94A, 199208, https://doi.org/10.2151/jmsj.2015-046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: Integrated Multi-satellitE Retreivals for GPM (IMERG) technical documentation. NASA Tech. Doc., 77 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_doc_190909.pdf.

  • Juang, H. M., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 326, https://doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, https://doi.org/10.1007/s00382-012-1500-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., V. Misra, R. Burgman, J. Infanti, and J. Obeysekera, 2017: Florida climate variability and prediction. Florida’s Climate: Changes, Variations, and Impacts, E. P. Chassignet et al., Eds., Florida Climate Institute, 511–532, https://doi.org/10.17125/fci2017.ch17.

    • Crossref
    • Export Citation
  • Kunkel, K. E., T. R. Karl, M. F. Squires, X. Yin, T. S. Stegall, and D. Easterling, 2013: Precipitation extremes: Trends and relationships with average precipitation and precipitable water in the contiguous United States. J. Appl. Meteor. Climatol., 59, 125142, https://doi.org/10.1175/JAMC-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., M. Kanamitsu, and S. Y. Hong, 2012: California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system. J. Geophys. Res., 117, D12118, https://doi.org/10.1029/2011JD017372.

    • Search Google Scholar
    • Export Citation
  • Li, H., M. Kanamitsu, S. Y. Hong, K. Yoshimura, D. R. Cayan, and V. Misra, 2014: A high-resolution ocean-atmosphere coupled downscaling of the present climate over California. Climate Dyn., 42, 701714, https://doi.org/10.1007/s00382-013-1670-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., S. K. Lee, D. B. Enfield, B. A. Muhling, J. T. Lamkin, F. E. Muller-Karger, and M. A. Roffer, 2015: Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections. J. Mar. Syst., 148, 5669, https://doi.org/10.1016/j.jmarsys.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., and A. Mishra, 2016: The oceanic influence on the rainy season of Peninsular Florida. J. Geophys. Res. Atmos., 121, 76917709, https://doi.org/10.1002/2016JD024824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., A. Mishra, and A. Bhardwaj, 2017a: High-resolution regional-coupled ocean–atmosphere simulation of the Indian Summer Monsoon. Int. J. Climatol., 37, 717740, https://doi.org/10.1002/joc.5034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., C. Selman, A. J. Waite, S. Bastola, and A. Mishra, 2017b: Terrestrial and ocean climate of the 20th century. Florida’s Climate: Changes, Variations, and Impacts, E. P. Chassignet et al., Eds., Florida Climate Institute, 485–509, https:/doi.org/10.17125/fci2017.ch17.

    • Crossref
    • Export Citation
  • Misra, V., A. Mishra, and A. Bhardwaj, 2018: Simulation of the intraseasonal variations of the Indian summer monsoon in a regional coupled ocean–atmosphere model. J. Climate, 31, 31673185, https://doi.org/10.1175/JCLI-D-17-0434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., A. Mishra, and A. Bhardwaj, 2019: A coupled ocean-atmosphere downscaled climate projection for the peninsular Florida region. J. Mar. Syst., 194, 2540, https://doi.org/10.1016/j.jmarsys.2019.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., I. Kamenkovich, L. M. Henaff, and B. P. Kirtman, 2017: Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico. Geophys. Res. Lett., 44, 63526362, https://doi.org/10.1002/2017GL072884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selman, C., V. Misra, L. Stefanova, S. DiNapoli, and T. J. Smith III, 2013: On the twenty first century wet season projections over the Southeastern United States. Reg. Env. Changes, 13, 153164, https://doi.org/10.1007/S10113-013-0477-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Soc, 93, 486498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc. of ECMWF Workshop on Convective in Large-scale Models, Reading, UK, European Centre for Medium-Range Weather Forecasts, 297–316, https://www.ecmwf.int/node/12733.

  • Trenberth, K., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, https://doi.org/10.1357/002224003322005087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USGCRP, 2018: Impacts, Risks, and Adaptation in the United States. Vol. II, Fourth National Climate Assessment, D. R. Reidmiller et al., Eds., U.S. Global Change Research Program, 1515 pp., https://doi.org/10.7930/NCA4.2018.

    • Crossref
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, https://doi.org/10.1029/2011GL048426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and et al. , 2014: Future changes to the intensity and frequency of short duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 19311953, https://doi.org/10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 289 289 48
Full Text Views 32 32 0
PDF Downloads 45 45 1

Estimating the Thermodynamic and Dynamic Contributions to Hydroclimatic Change over Peninsular Florida

View More View Less
  • 1 Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
  • | 2 Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida
  • | 3 Florida Climate Institute, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

In this study we examine the thermodynamically and dynamically forced hydroclimatic changes in the four representative seasons over Peninsular Florida (PF) from an unprecedented pair of high-resolution regional coupled ocean–atmosphere model simulations conducted at 10-km grid spacing for both the atmospheric and the oceanic components forced by one of the global climate models that participated in CMIP5. The model simulation verifies reasonably well with the observations and captures the distinct seasonal cycle of the region. The projected change in the freshwater flux in the mid-twenty-first century (2041–60) relative to the late twentieth century (1986–2005) shows a precipitation deficit in the summer over PF, which is statistically significant. This projected change in freshwater flux over PF is enabled by the strengthening of the anticyclonic North Atlantic subtropical high circulation with corresponding changes in divergence of moisture, advection of moisture from changes in the winds and in the change in humidity gradient, and from the change in moisture flux convergence by the transient eddies. These changes suggest that a future warm climate could witness a drier summer over PF at the expense of a wetter West Florida Shelf. The analysis conducted in this study reveals that the changes in atmospheric circulation have a significant impact on the hydroclimate, far more than that implied by the Clausius–Clapeyron equation from changes in temperature.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vasubandhu Misra, vmisra@fsu.edu

Abstract

In this study we examine the thermodynamically and dynamically forced hydroclimatic changes in the four representative seasons over Peninsular Florida (PF) from an unprecedented pair of high-resolution regional coupled ocean–atmosphere model simulations conducted at 10-km grid spacing for both the atmospheric and the oceanic components forced by one of the global climate models that participated in CMIP5. The model simulation verifies reasonably well with the observations and captures the distinct seasonal cycle of the region. The projected change in the freshwater flux in the mid-twenty-first century (2041–60) relative to the late twentieth century (1986–2005) shows a precipitation deficit in the summer over PF, which is statistically significant. This projected change in freshwater flux over PF is enabled by the strengthening of the anticyclonic North Atlantic subtropical high circulation with corresponding changes in divergence of moisture, advection of moisture from changes in the winds and in the change in humidity gradient, and from the change in moisture flux convergence by the transient eddies. These changes suggest that a future warm climate could witness a drier summer over PF at the expense of a wetter West Florida Shelf. The analysis conducted in this study reveals that the changes in atmospheric circulation have a significant impact on the hydroclimate, far more than that implied by the Clausius–Clapeyron equation from changes in temperature.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vasubandhu Misra, vmisra@fsu.edu
Save