• Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, https://doi.org/10.1002/qj.803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and et al. , 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, https://doi.org/10.2151/jmsj.87A.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birman, C., F. Karbou, and J.-F. Mahfouf, 2015: Daily rainfall detection and estimation over land using microwave surface emissivities. J. Appl. Meteor. Climatol., 54, 880895, https://doi.org/10.1175/JAMC-D-14-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., and et al. , 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 32493272, https://doi.org/10.1109/TGRS.2011.2158438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., and et al. , 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, https://doi.org/10.1002/2014JD021489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., and G. W. Petty, 2006: Bayesian retrieval of complete posterior PDFs of oceanic rain rate from microwave observations. J. Appl. Meteor. Climatol., 45, 10731095, https://doi.org/10.1175/JAM2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., G. J. Huffman, R. Bindlish, and T. J. Jackson, 2009: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals. J. Hydrometeor., 10, 199212, https://doi.org/10.1175/2008JHM986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., R. L. Bras, and E. Foufoula-Georgiou, 2015: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens., 53, 37203736, https://doi.org/10.1109/TGRS.2014.2382436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., J. Turk, T. Wong, and G. L. Stephens, 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34, 260279, https://doi.org/10.1175/1520-0450-34.1.260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, https://doi.org/10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., N. C. Grody, and G. F. Marks, 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I. Remote Sens. Rev., 11, 195209, https://doi.org/10.1080/02757259409532265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., F. Weng, N. C. Grody, and L. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672, https://doi.org/10.1029/2000GL011665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and et al. , 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, https://doi.org/10.1109/TGRS.2012.2199121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalan, K., N.-Y. Wang, R. Ferraro, and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, https://doi.org/10.1175/2010JTECHA1454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96, 74237435, https://doi.org/10.1029/91JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Islam, T., P. K. Srivastava, M. A. Rico-Ramirez, Q. Dai, D. Han, and M. Gupta, 2014: An exploratory investigation of an Adaptive Neuro Fuzzy Inference System (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR. Atmos. Res., 145–146, 5768, https://doi.org/10.1016/j.atmosres.2014.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1993: III. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7, 139152, https://doi.org/10.1002/hyp.3360070205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., J. Weinman, W. Olson, D.-E. Chang, G. Skofronick-Jackson, and J. Wang, 2008: A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res., 113, D09201, https://doi.org/10.1029/2007JD008589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., L. Brocca, W. T. Crow, M. S. Burgin, and G. J. De Lannoy, 2016: Precipitation estimation using L-band and C-band soil moisture retrievals. Water Resour. Res., 52, 72137225, https://doi.org/10.1002/2016WR019024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and et al. , 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, https://doi.org/10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, https://doi.org/10.1109/36.536538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., and P. Minnis, 2000: Temporal variations of land surface microwave emissivities over the Atmospheric Radiation Measurement program Southern Great Plains site. J. Appl. Meteor., 39, 11031116, https://doi.org/10.1175/1520-0450(2000)039<1103:TVOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., S. H. Alemohammad, R. Akbar, A. G. Konings, S. Yueh, and D. Entekhabi, 2017: The global distribution and dynamics of surface soil moisture. Nat. Geosci., 10, 100104, https://doi.org/10.1038/ngeo2868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, H., J. Dong, R. Ferraro, B. Yan, L. Zhao, C. Kongoli, N.-Y. Wang, and B. Zavodsky, 2017: A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers. J. Geophys. Res. Atmos., 122, 65206540, https://doi.org/10.1002/2016JD026325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., S. Ringerud, L. Brucker, Y. You, I. de Gelis, and C. Prigent, 2020: An active-passive microwave land surface database from GPM. IEEE Trans. Geosci. Remote Sens., 58, 62246242, https://doi.org/10.1109/TGRS.2020.2975477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., G. Liu, E.-K. Seo, J. R. Wang, and K. Aonashi, 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, https://doi.org/10.1029/2005JD006826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norouzi, H., W. Rossow, M. Temimi, C. Prigent, M. Azarderakhsh, S. Boukabara, and R. Khanbilvardi, 2012: Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ., 123, 470482, https://doi.org/10.1016/j.rse.2012.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., S. Louvet, C. Gruhier, G. Quantin, and C. Legout, 2013: A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ., 136, 2836, https://doi.org/10.1016/j.rse.2013.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and K. Li, 2013a: Improved passive microwave retrievals of rain rate over land and ocean. Part I: Algorithm description. J. Atmos. Oceanic Technol., 30, 24932508, https://doi.org/10.1175/JTECH-D-12-00144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and K. Li, 2013b: Improved passive microwave retrievals of rain rate over land and Ocean. Part II: Validation and intercomparison. J. Atmos. Oceanic Technol., 30, 25092526, https://doi.org/10.1175/JTECH-D-12-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, https://doi.org/10.1175/BAMS-87-11-1573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., 2017: Global Multisensor Automated satellite-based Snow and Ice Mapping System (GMASI) for cryosphere monitoring. Remote Sens. Environ., 196, 4255, https://doi.org/10.1016/j.rse.2017.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sano, P., D. Casella, A. Mugnai, G. Schiavon, E. A. Smith, and G. J. Tripoli, 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 1. Algorithm description and testing. IEEE Trans. Geosci. Remote Sens., 51, 41194143, https://doi.org/10.1109/TGRS.2012.2227332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., and et al. , 2009: The GSMaP precipitation retrieval algorithm for microwave sounders—Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens., 47, 30843097, https://doi.org/10.1109/TGRS.2009.2019954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R., D. Martin, B. Hinton, and J. Weinman, 1983a: Satellite microwave radiances correlated with radar rain rates over land. Nature, 304, 141143, https://doi.org/10.1038/304141a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R., W. Olson, W. Rongzhang, D. Martin, J. Weinman, and D. Santek, 1983b: Heavy thunderstorms observed over land by the Nimbus 7 Scanning Multichannel Microwave Radiometer. J. Climate Appl. Meteor., 22, 10411046, https://doi.org/10.1175/1520-0450(1983)022<1041:HTOOLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and F. W. Chen, 2000: Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens., 38, 23222332, https://doi.org/10.1109/36.868889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and D. H. Staelin, 2010: NPOESS precipitation retrievals using the ATMS passive microwave spectrometer. IEEE Geosci. Remote Sens. Lett., 7, 440444, https://doi.org/10.1109/LGRS.2009.2038614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Z. S. Haddad, and Y. You, 2014: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, https://doi.org/10.1175/JHM-D-13-08.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., C. Liu, R. Ferraro, D. Wolff, E. Zipser, and C. Kummerow, 2009: TRMM 2A12 land precipitation product-status and future plans. J. Meteor. Soc. Japan, 87A, 237253, https://doi.org/10.2151/jmsj.87A.237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., F. Weng, B. Yan, N. Sun, and M. Goldberg, 2011: Special Sensor Microwave Imager (SSM/I) intersensor calibration using a simultaneous conical overpass technique. J. Appl. Meteor. Climatol., 50, 7795, https://doi.org/10.1175/2010JAMC2271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., J. Hawkins, and K. Richardson, 2014: The improved NRL tropical cyclone monitoring system with a unified microwave brightness temperature calibration scheme. Radio Sci., 6, 45634581, https://doi.org/10.3390/rs6054563.

    • Search Google Scholar
    • Export Citation
  • Yin, J., X. Zhan, J. Liu, and M. Schull, 2019: An intercomparison of Noah model skills with benefits of assimilating SMOPS blended and individual soil moisture retrievals. Water Resour. Res., 55, 25722592, https://doi.org/10.1029/2018WR024326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., F. J. Turk, Z. S. Haddad, L. Li, and G. Liu, 2014: Principal components of multifrequency microwave land surface emissivities. Part II: Effects of previous-time precipitation. J. Hydrometeor., 15, 2037, https://doi.org/10.1175/JHM-D-13-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, and R. Ferraro, 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, https://doi.org/10.1002/2014JD022534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and P. Meyers, 2016: A prototype precipitation retrieval algorithm over land for ATMS. J. Hydrometeor., 17, 16011621, https://doi.org/10.1175/JHM-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, J. Turk, S. Ringerud, and S. Yang, 2017: Improving overland precipitation retrieval with brightness temperature temporal variation. J. Hydrometeor., 18, 23552383, https://doi.org/10.1175/JHM-D-17-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., C. Peters-Lidard, N.-Y. Wang, J. Turk, S. Ringerud, S. Yang, and R. Ferraro, 2018: The instantaneous retrieval of precipitation over land by temporal variation at 19 GHz. J. Geophys. Res. Atmos., 123, 92799295, https://doi.org/10.1029/2017JD027596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., and et al. , 2020: Comparison of TRMM microwave imager rainfall datasets from NASA and JAXA. J. Hydrometeor., 21, 377397, https://doi.org/10.1175/JHM-D-19-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 65 65 31
Full Text Views 98 98 1
PDF Downloads 77 77 2

Daily Rainfall Estimate by Emissivity Temporal Variation from 10 Satellites

View More View Less
  • 1 Cooperative Institute for Satellites Earth System Studies, University of Maryland, College Park, College Park, Maryland
  • | 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Rainfall retrieval algorithms for passive microwave radiometers often exploit the brightness temperature depression due to ice scattering at high-frequency channels (≥85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low-frequency channels (19, 24, and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounders (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Units-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all 10 satellites, 5 imagers, 6 satellites with very different equator crossing times, and GMI only. Results show that Δe from all 10 satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, compared with the Integrated Multisatellite Retrievals for GPM (IMERG) Final run product. The 6-satellites scheme has comparable performance with the all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yalei You, yyou@umd.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Rainfall retrieval algorithms for passive microwave radiometers often exploit the brightness temperature depression due to ice scattering at high-frequency channels (≥85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low-frequency channels (19, 24, and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounders (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Units-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all 10 satellites, 5 imagers, 6 satellites with very different equator crossing times, and GMI only. Results show that Δe from all 10 satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, compared with the Integrated Multisatellite Retrievals for GPM (IMERG) Final run product. The 6-satellites scheme has comparable performance with the all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yalei You, yyou@umd.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save