• Augustine, J. A., J. J. DeLuisi, and C. N. Long, 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 23412357, https://doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badgley, G., J. B. Fisher, C. Jimenez, K. P. Tu, and R. K. Vinukollu, 2015: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeor., 16, 14491455, https://doi.org/10.1175/JHM-D-14-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z. L. Yang, and G. Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, https://doi.org/10.1007/s10584-014-1308-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and G. Abramowitz, 2013: Climate model dependence and the replicate Earth paradigm. Climate Dyn., 41, 885900, https://doi.org/10.1007/s00382-012-1610-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breon, F., R. Frouin, and C. Gautier, 1994: Global shortwave energy budget at the Earth’s surface from ERBE observations. J. Climate, 7, 309324, https://doi.org/10.1175/1520-0442(1994)007<0309:GSEBAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: The surface roughness parameterization. Evaporation into the Atmosphere: Theory, History and Applications, Springer, 113–127.

    • Crossref
    • Export Citation
  • Cai, X., Z. L. Yang, C. H. David, G. Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos., 119, 2338, https://doi.org/10.1002/2013JD020792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., T. L. Alberta, T. P. Charlock, and T. L. Alberta, 1996: The CERES/ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Amer. Meteor. Soc., 77, 26732683, https://doi.org/10.1175/1520-0477(1996)077<2673:TCEFTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., J. Mai, L. Samaniego, M. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 1998: Validation and sensitivity of the global hydrologic budget in stand-alone simulations with the ISBA land-surface scheme. Climate Dyn., 14, 151171, https://doi.org/10.1007/s003820050215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driemel, A., and et al. , 2018: Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data, 10, 14911501, https://doi.org/10.5194/essd-10-1491-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., F. Melton, E. Middleton, C. Hain, M. Anderson, R. Allen, and E. F. Wood, 2017: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., 53, 26182626, https://doi.org/10.1002/2016WR020175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, E., Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, 1998: Using model trees for classification. Mach. Learn., 32, 6376, https://doi.org/10.1023/A:1007421302149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, G., D. Chen, G. Ren, Y. Chen, and Y. Liao, 2006: Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J. Geogr. Sci., 16, 312, https://doi.org/10.1007/s11442-006-0101-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilgen, H., and A. Ohmura, 1999: The Global Energy Balance Archive. Bull. Amer. Meteor. Soc., 80, 831850, https://doi.org/10.1175/1520-0477(1999)080<0831:TGEBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. Yu, and D. N. Yates, 2015: The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp., https://ral.ucar.edu/sites/default/files/public/WRF_Hydro_User_Guide_v3.0_CLEAN.pdf.

  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710, https://doi.org/10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., K. E. Lapo, N. C. Cristea, and J. D. Lundquist, 2015: Using CERES SYN surface irradiance data as forcing for snowmelt simulation in complex terrain. J. Hydrometeor., 16, 21332152, https://doi.org/10.1175/JHM-D-14-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., M. Ma, S. Liang, S. Liu, and X. Li, 2011: A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data. J. Geophys. Res., 116, D22201, https://doi.org/10.1029/2011JD016120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., Z. Li, X. Li, S. Liang, K. Yang, D. Wang, and Y. Zhang, 2019: Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. Environ., 233, 111371, https://doi.org/10.1016/j.rse.2019.111371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, G., and H. Wackernagel, 1994: Mapping temperature using kriging with external drift: Theory and an example from Scotland. Int. J. Climatol., 14, 7791, https://doi.org/10.1002/joc.3370140107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inamdar, A. K., and P. C. Guillevic, 2015: Net surface shortwave radiation from GOES imagery-product evaluation using ground-based measurements from SURFRAD. Remote Sens., 7, 10 78810 814, https://doi.org/10.3390/rs70810788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, A., and T. Sasai, 2006: A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets. Tellus, 58B, 513522, https://doi.org/10.1111/j.1600-0889.2006.00208.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jia, B., Z. Xie, A. Dai, C. Shi, and F. Chen, 2013: Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations. J. Geophys. Res. Atmos., 118, 34313446, https://doi.org/10.1002/jgrd.50353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical Documentation for SNTHERM. 89. Special Rep. 91-16, 49 pp., https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/11677/1/SR-91-16.pdf.

  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, https://doi.org/10.5194/bg-6-2001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapo, K. E., L. M. Hinkelman, M. S. Raleigh, and J. D. Lundquist, 2015: Impact of errors in the downwelling irradiances on simulations of snow water equivalent, snow surface temperature, and the snow energy balance. Water Resour. Res., 51, 16491670, https://doi.org/10.1002/2014WR016259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapo, K. E., L. M. Hinkelman, E. Sumargo, M. Hughes, and J. D. Lundquist, 2017: A critical evaluation of modeled solar irradiance over California for hydrologic and land surface modeling. J. Geophys. Res. Atmos., 122, 299317, https://doi.org/10.1002/2016JD025527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., J. Wei, Z. L. Yang, Y. Zhang, and K. Zhang, 2016: Snow data assimilation-constrained land initialization improves seasonal temperature prediction. Geophys. Res. Lett., 43, 11 42311 432, https://doi.org/10.1002/2016GL070966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2015: Evapotranspiration in northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates. J. Geophys. Res. Atmos., 120, 26472660, https://doi.org/10.1002/2014JD022531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and C. B. Field, 2008: Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Global Change Biol., 14, 3945, https://doi.org/10.1111/j.1365-2486.2007.01476.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, N., R. Liu, J. Liu, and S. Liang, 2010: An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J. Geophys. Res., 115, D18102, https://doi.org/10.1029/2009JD013457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and R. T. Pinker, 2012: Modeling shortwave radiative fluxes from satellites. J. Geophys. Res., 117, D23202, https://doi.org/10.1029/2012JD018332.

    • Search Google Scholar
    • Export Citation
  • Mellit, A., H. Eleuch, M. Benghanem, C. Elaoun, and A. M. Pavan, 2010: An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers. Manage., 51, 771782, https://doi.org/10.1016/j.enconman.2009.10.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménard, C. B., J. Ikonen, K. Rautiainen, M. Aurela, A. N. Arslan, and J. Pulliainen, 2015: Effects of meteorological and ancillary data, temporal averaging, and evaluation methods on model performance and uncertainty in a land surface model. J. Hydrometeor., 16, 25592576, https://doi.org/10.1175/JHM-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 10141017, https://doi.org/10.1038/nature07949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möser, W., and E. Raschke, 1984: Incident solar radiation over Europe estimated from METEOSAT data. J. Climate Appl. Meteor., 23, 166170, https://doi.org/10.1175/1520-0450(1984)023<0166:ISROEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937952, https://doi.org/10.1175/JHM538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and et al. , 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, P. J. C., E. L. Davin, S. Levis, and S. I. Seneviratne, 2011: Vegetation-mediated impacts of trends in global radiation on land hydrology: A global sensitivity study. Global Change Biol., 17, 34533467, https://doi.org/10.1111/j.1365-2486.2011.02506.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedruzo-Bagazgoitia, X., H. G. Ouwersloot, M. Sikma, C. C. van Heerwaarden, C. M. J. Jacobs, and J. V. G. de Arellano, 2017: Direct and diffuse radiation in the shallow cumulus-vegetation system: Enhanced and decreased evapotranspiration regimes. J. Hydrometeor., 18, 17311748, https://doi.org/10.1175/JHM-D-16-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, L., D. Li, and J. Sheffield, 2018: Drivers of variability in atmospheric evaporative demand: Multiscale spectral analysis based on observations and physically based modeling. Water Resour. Res., 54, 35103529, https://doi.org/10.1029/2017WR022104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, G. L. W., and M. E. Dickson, 2018: Using machine learning to predict geomorphic disturbance: The effects of sample size, sample prevalence, and sampling strategy. J. Geophys. Res. Earth Surf., 123, 29542970, https://doi.org/10.1029/2018JF004640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Ferrier, 2009: Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl., 19, 181197, https://doi.org/10.1890/07-2153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., 2005: Do satellites detect trends in surface solar radiation? Science, 308, 850854, https://doi.org/10.1126/science.1103159.

  • Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211, https://doi.org/10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., W. Wang, L. R. Leung, and D. P. Kaiser, 2007: Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophys. Res. Lett., 34, L12804, https://doi.org/10.1029/2006GL028800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschke, E., S. Bakan, and S. Kinne, 2006: An assessment of radiation budget data provided by the ISCCP and GEWEX-SRB. Geophys. Res. Lett., 33, L07812, https://doi.org/10.1029/2005GL025503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regayre, L. A., and et al. , 2014: Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. Geophys. Res. Lett., 41, 90409049, https://doi.org/10.1002/2014GL062029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and E. N. Dueñas, 2004: The International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for research. Bull. Amer. Meteor. Soc., 85, 167172, https://doi.org/10.1175/BAMS-85-2-167.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and et al. , 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, https://doi.org/10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Lorenzo, A., A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicente-Serrano, A. Sanchez-Romero, R. Posselt, and M. Z. Hakuba, 2017: Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010. Remote Sens. Environ., 189, 108117, https://doi.org/10.1016/j.rse.2016.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q. Y. Duan, K. E. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwingshackl, C., M. Hirschi, and S. I. Seneviratne, 2018: Global contributions of incoming radiation and land surface conditions to maximum near-surface air temperature variability and trend. Geophys. Res. Lett., 45, 50345044, https://doi.org/10.1029/2018GL077794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, G. Y., T. Hayasaka, A. Ohmura, Z. H. Chen, B. Wang, J. Q. Zhao, H. Z. Che, and L. Xu, 2008: Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. Climatology, 47, 10061016, https://doi.org/10.1175/2007JAMC1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skeie, R. B., T. K. Berntsen, G. Myhre, K. Tanaka, M. M. Kvalevåg, and C. R. Hoyle, 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11 82711 857, https://doi.org/10.5194/acp-11-11827-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., K. G. Shashi, S. J. Cox, J. C. Mikovitz, T. Zhang, and L. M. Hinkelman, 2011: 24.5-year SRB data set released. GEWEX News, Vol. 21, No. 1, International GEWEX Project Office, Silver Spring, MD, 10–12, http://www.gewex.org/gewex-content/files_mf/1432209318Feb2011.pdf.

  • Sun, D., C. Ji, W. Sun, Y. Yang, and H. Wang, 2018: Accuracy assessment of three remote sensing shortwave radiation products in the Arctic. Atmos. Res., 212, 296308, https://doi.org/10.1016/j.atmosres.2018.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., K. Yang, J. He, and J. Qin, 2010: Quality control and estimation of global solar radiation in China. Sol. Energy, 84, 466475, https://doi.org/10.1016/j.solener.2010.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., J. Qin, K. Yang, S. Liu, N. Lu, and X. Niu, 2016: Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data. Atmos. Chem. Phys., 16, 25432557, https://doi.org/10.5194/acp-16-2543-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., N. Haughton, M. G. D. Kauwe, G. Abramowitz, and A. J. Pitman, 2017: FluxnetLSM R package (v1.0): A community tool for processing FLUXNET data for use in land surface modelling. Geosci. Model Dev., 10, 33793390, https://doi.org/10.5194/gmd-10-3379-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, https://doi.org/10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., R. Meynadier, J. Sheffield, and E. F. Wood, 2011: Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Processes, 25, 39934010, https://doi.org/10.1002/hyp.8393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuichard, N., and D. Papale, 2015: 2015: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis. Earth Syst. Sci. Data, 7, 157171, https://doi.org/10.5194/essd-7-157-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., 2014: Measurement biases explain discrepancies between the observed and simulated decadal variability of surface incident solar radiation. Sci. Rep., 4, 6144, https://doi.org/10.1038/SREP06144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., and S. Liang, 2009: Estimation of daytime net radiation from shortwave radiation measurements and meteorological observations. J. Appl. Meteor. Climatol., 48, 634643, https://doi.org/10.1175/2008JAMC1959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., and R. E. Dickinson, 2013: Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev. Geophys., 51, 150185, https://doi.org/10.1002/rog.20009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., D. , and Q. He, 2015: The impact of surface properties on downward surface shortwave radiation over the Tibetan Plateau. Adv. Atmos. Sci., 32, 759771, https://doi.org/10.1007/s00376-014-4131-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., G. Yan, and L. Chen, 2012: Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux components under clear-sky conditions. Remote Sens. Environ., 124, 6171, https://doi.org/10.1016/j.rse.2012.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., X. Zhang, N. Hou, W. Zhang, K. Jia, and Y. Yao, 2019: Estimation of surface downward shortwave radiation over China from AVHRR data based on four machine learning methods. Sol. Energy, 177, 3246, https://doi.org/10.1016/j.solener.2018.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 1999: Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. J. Geophys. Res., 104, 27 36127 371, https://doi.org/10.1029/1999JD900925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 308, 847850, https://doi.org/10.1126/science.1103215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, C. Schär, G. Mueller, D. Folini, M. Schwarz, M. Z. Hakuba, and A. Sanchez-Lorenzo, 2017: The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data, 9, 601613, https://doi.org/10.5194/essd-9-601-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, F., and C. Fu, 2011: Assessment of GEWEX/SRB version 3.0 monthly global radiation dataset over China. Meteor. Atmos. Phys., 112, 155166, https://doi.org/10.1007/s00703-011-0136-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2011: Snow-atmosphere coupling strength in a global atmospheric model. Geophys. Res. Lett., 38, L13401, https://doi.org/10.1029/2011GL048049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013: Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404418, https://doi.org/10.1175/JHM-D-11-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, P. Stackhouse, C. Mikovitz, and S. J. Cox, 2006: An assessment of satellite surface radiation products for highlands with Tibet instrumental data. Geophys. Res. Lett., 33, L22403, https://doi.org/10.1029/2006GL027640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., J. He, W. Tang, J. Qin, and C. C. K. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteor., 150, 3846, https://doi.org/10.1016/j.agrformet.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., X. Zhang, S. Liang, Y. Yao, K. Jia, and A. Jia, 2018: Estimating surface downward shortwave radiation over China based on the gradient boosting decision tree method. Remote Sens., 10, 185, https://doi.org/10.3390/rs10020185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., T. Wang, F. Zhou, P. Ciais, J. Mao, X. Shi, and S. Piao, 2014: A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos., 119, 11861202, https://doi.org/10.1002/2013JD020941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Bai, H. Yan, H. Guo, S. Yang, and J. Wang, 2020: Linking observation, modelling and satellite-based estimation of global land evapotranspiration. Big Earth Data, 4, 94127, https://doi.org/10.1080/20964471.2020.1743612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-T., S. Liang, M. Wild, and B. Jiang, 2015: Analysis of surface incident shortwave radiation from four satellite products. Remote Sens. Environ., 165, 186202, https://doi.org/10.1016/j.rse.2015.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-X., N. Lu, H. Jiang, and L. Yao, 2020: Evaluation of reanalysis surface incident solar radiation data in China. Sci. Rep., 10, 3494, https://doi.org/10.1038/s41598-020-60460-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, H., Z. L. Yang, P. Lin, J. Wei, W. Y. Wu, L. Li, L. Zhao, and S. Wang, 2019: On the sensitivity of the precipitation partitioning into evapotranspiration and runoff in land surface parameterizations. Water Resour. Res., 55, 95111, https://doi.org/10.1029/2017WR022236.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 219 219 74
Full Text Views 43 43 14
PDF Downloads 46 46 15

Reducing Solar Radiation Forcing Uncertainty and Its Impact on Surface Energy and Water Fluxes

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 2 Food Program, World Resources Institute, Washington, D.C.
  • | 3 Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China
  • | 4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 5 School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
  • | 6 School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

Downward shortwave radiation Rsd determines the surface energy balance, alters evapotranspiration and hydrological conditions, and feeds back to the regional and global climate. Large-scale Rsd estimates are usually retrieved from satellite-based top-of-atmosphere radiation and cloud parameters. These estimates are subject to biases and temporal inhomogeneity due to errors in atmospheric parameters, algorithms, and sensor changes. We found that three satellite products overestimate Rsd by 8%–10% over Asia for 1984–2006, particularly in high latitudes. We used the model tree ensemble (MTE) machine-learning algorithm and commonly used ensemble averaging methods to integrate ground observations and satellite products. Validations based on test stations and independent networks showed that the MTE approach reduces the median relative biases from 8%–10% to 2%, which is more effective than the ensemble averaging methods. We further evaluated the impacts of uncertainty in radiation forcing on surface energy and water balances using the land surface model Noah-MP. The uncertainty of radiation data affects the prediction of sensible heat the most, and also largely affects latent heat prediction in humid regions. Holding the other variables constant, a 10% positive bias in Rsd can lead to a 20%–60% positive bias in the monthly median sensible heat. The simulated hydrological responses to changing radiation forcing are nonlinear as a result of the interactions among evapotranspiration, snowpack, and soil moisture. Our analysis concludes that reducing uncertainty of radiation data is beneficial for predicting regional energy and water balances, which requires more high-quality ground observations and improved satellite retrieval algorithms.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liqing Peng, pengliqing51@gmail.com

Abstract

Downward shortwave radiation Rsd determines the surface energy balance, alters evapotranspiration and hydrological conditions, and feeds back to the regional and global climate. Large-scale Rsd estimates are usually retrieved from satellite-based top-of-atmosphere radiation and cloud parameters. These estimates are subject to biases and temporal inhomogeneity due to errors in atmospheric parameters, algorithms, and sensor changes. We found that three satellite products overestimate Rsd by 8%–10% over Asia for 1984–2006, particularly in high latitudes. We used the model tree ensemble (MTE) machine-learning algorithm and commonly used ensemble averaging methods to integrate ground observations and satellite products. Validations based on test stations and independent networks showed that the MTE approach reduces the median relative biases from 8%–10% to 2%, which is more effective than the ensemble averaging methods. We further evaluated the impacts of uncertainty in radiation forcing on surface energy and water balances using the land surface model Noah-MP. The uncertainty of radiation data affects the prediction of sensible heat the most, and also largely affects latent heat prediction in humid regions. Holding the other variables constant, a 10% positive bias in Rsd can lead to a 20%–60% positive bias in the monthly median sensible heat. The simulated hydrological responses to changing radiation forcing are nonlinear as a result of the interactions among evapotranspiration, snowpack, and soil moisture. Our analysis concludes that reducing uncertainty of radiation data is beneficial for predicting regional energy and water balances, which requires more high-quality ground observations and improved satellite retrieval algorithms.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liqing Peng, pengliqing51@gmail.com
Save