• Arora, V., 2002: Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys., 40, 1006, https://doi.org/10.1029/2001RG000103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badgley, G., J. B. Fisher, C. Jiménez, K. P. Tu, and R. Vinukollu, 2015: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeor., 16, 14491455, https://doi.org/10.1175/JHM-D-14-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batra, N., S. Islam, V. Venturini, G. Bisht, and L. Jiang, 2006: Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sens. Environ., 103, 115, https://doi.org/10.1016/j.rse.2006.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, R. J., 1963: Evapotranspiration réelle et potentielle, signification climatique. IAHS Publ., 62, 134142.

  • Brutsaert, W., 2015: A generalized complementary principle with physical constraints for land-surface evaporation. Water Resour. Res., 51, 80878093, https://doi.org/10.1002/2015WR017720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkett, V., and J. Kusler, 2000: Climate change: Potential impacts and interactions in wetlands of the United States 1. J. Amer. Water Resour. Assoc., 36, 313320, https://doi.org/10.1111/j.1752-1688.2000.tb04270.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and Coauthors, 2014: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ., 140, 279293, https://doi.org/10.1016/j.rse.2013.08.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Er-Raki, S., A. Chehbouni, S. Khabba, V. Simonneaux, L. Jarlan, A. Ouldbba, J. C. Rodriguez, and R. Allene, 2010: Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters? J. Arid Environ., 74, 15871596, https://doi.org/10.1016/j.jaridenv.2010.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Cuo, and Y. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 18761893, https://doi.org/10.1175/JCLI-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, C., Y. Ma, X. Chen, and Z. Su, 2017: Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012. Int. J. Climatol., 37, 47574767, https://doi.org/10.1002/joc.5119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., J. A. Ramirez, and T. C. Brown, 2001: The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour. Res., 37, 13891403, https://doi.org/10.1029/2000WR900359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., A. Dai, M. L. Roderick, and G. D. Farquhar, 2008: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett., 35, L12403, https://doi.org/10.1029/2008GL033840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., S. Li, G. Yu, X. Sun, L. Zhang, S. Han, and Y. Li, 2013: Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. J. Hydrol., 501, 186192, https://doi.org/10.1016/j.jhydrol.2013.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, https://doi.org/10.5194/bg-6-2001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, Y., K. Yang, B. Wang, Y. Sheng, B. W. Bird, G. Zhang, and L. Tian, 2014: Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 125, 281290, https://doi.org/10.1007/s10584-014-1175-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., and J. S. Famiglietti, 2006: Hydrology: Water from on high. Nature, 444, 562563, https://doi.org/10.1038/444562a.

  • Li, X., and Coauthors, 2014a: Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology, 7, 139149, https://doi.org/10.1002/eco.1341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., L. Wang, D. Chen, K. Yang, and A. Wang, 2014b: Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J. Geophys. Res. Atmos., 119, 13 07913 095, https://doi.org/10.1002/2014JD022380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2018: Disentangling climate and LAI effects on seasonal variability in water use efficiency across terrestrial ecosystems in China. J. Geophys. Res. Biogeosci., 123, 24292443, https://doi.org/10.1029/2018JG004482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S., G. Wang, J. Feng, L. Dan, X. Sun, Z. Hu, X. Chen, and X. Xiao, 2019: A carbon flux assessment driven by environmental factors over the Tibetan Plateau and various permafrost regions. J. Geophys. Res. Biogeosci., 124, 11321147, https://doi.org/10.1029/2018JG004789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Jia, Z. Xie, and C. Shi, 2016: Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach. Adv. Atmos. Sci., 33, 673684, https://doi.org/10.1007/s00376-016-5213-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, X., and Coauthors, 2010: Advances in research of land surface evapotranspiration at home and abroad. Sci. Cold Arid. Reg., 2, 104111.

    • Search Google Scholar
    • Export Citation
  • Lv, M., Z. Ma, X. Yuan, M. Lv, M. Li, and Z. Zheng, 2017: Water budget closure based on GRACE measurements and reconstructed evapotranspiration using GLDAS and water use data for two large densely-populated mid-latitude basins. J. Hydrol., 547, 585599, https://doi.org/10.1016/j.jhydrol.2017.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, N., J. Szilagyi, Y. Zhang, and W. Liu, 2019: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses. J. Geophys. Res. Atmos., 124, 43264351, https://doi.org/10.1029/2018JD029850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mingyue, C., W. Junbang, W. Shaoqiang, Y. Hao, and L. Yingnian, 2019: Temporal and spatial distribution of evapotranspiration and its influencing factors on Qinghai-Tibet Plateau from 1982 to 2014. J. Resour. Ecol., 10, 213224, https://doi.org/10.5814/j.issn.1674-764x.2019.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and M. Choi, 2015: Estimation of evapotranspiration from ground-based meteorological data and Global Land Data Assimilation System (GLDAS). Stochastic Environ. Res. Risk Assess., 29, 19631992, https://doi.org/10.1007/s00477-014-1004-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., A. Loew, X. Chen, Y. Ma, and Z. Su, 2016: Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 20, 31673182, https://doi.org/10.5194/hess-20-3167-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120145, https://doi.org/10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Piao, S., K. Tan, H. Nan, P. Ciais, J. Fang, T. Wang, N. Vuichard, and B. Zhue, 2012: Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Global Planet. Change, 98–99, 7380, https://doi.org/10.1016/j.gloplacha.2012.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and R. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Q., and S. Liang, 2013: Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: 2. Spatiotemporal analysis. J. Geophys. Res. Atmos., 118, 89218934, https://doi.org/10.1002/jgrd.50719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., J. Mao, P. E. Thornton, and M. Huang, 2013: Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environ. Res. Lett., 8, 024012, https://doi.org/10.1088/1748-9326/8/2/024012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., Q. Zhuang, Y. Yin, X. Zhu, and S. Wu, 2017: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ. Res. Lett., 12, 014011, https://doi.org/10.1088/1748-9326/aa527d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Lin, Z. Hu, Y. Lu, X. Sun, and K. Huang, 2020: Improving actual evapotranspiration estimation integrating energy consumption for ice phase change across the Tibetan Plateau. J. Geophys. Res. Atmos., 125, e2019JD031799, https://doi.org/10.1029/2019JD031799.

    • Search Google Scholar
    • Export Citation
  • Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow, 2007: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res., 112, D15107, https://doi.org/10.1029/2006JD008351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., J. Li, Z. Yu, Y. Ding, W. Xing, and W. Lu, 2018: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. J. Hydrol., 559, 471485, https://doi.org/10.1016/j.jhydrol.2018.02.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wartenburger, R., and Coauthors, 2018: Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environ. Res. Lett., 13, 075001, https://doi.org/10.1088/1748-9326/aac4bb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, B.-L., L. Wang, X. Li, K. Yang, D. Chen, and L. Sun, 2013: Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol., 492, 290297, https://doi.org/10.1016/j.jhydrol.2013.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and D. Yang, 2012: Climatic factors influencing changing pan evaporation across China from 1961 to 2001. J. Hydrol., 414–415, 184193, https://doi.org/10.1016/j.jhydrol.2011.10.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., J. He, W. Tang, J. Qin, and C. C. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteor., 150, 3846, https://doi.org/10.1016/j.agrformet.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou, 2011: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517534, https://doi.org/10.1007/s10584-011-0099-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. Chen, C. Han, and W. Qing, 2013: Measurement and estimation of the summertime daily evapotranspiration on alpine meadow in the Qilian Mountains, northwest China. Environ. Earth Sci., 68, 22532261, https://doi.org/10.1007/s12665-012-1907-5.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., and Coauthors, 2013: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. For. Meteor., 171–172, 187202, https://doi.org/10.1016/j.agrformet.2012.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Coauthors, 2018: Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecohydrology, 11, e1925, https://doi.org/10.1002/eco.1925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, R. R. Nemani, and S. W. Running, 2010: A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009WR008800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, R. R. Nemani, S. W. Running, Y. Hong, J. J. Gourley, and Z. Yu, 2015: Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep., 5, 15956, https://doi.org/10.1038/srep15956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. Gebremichael, X. Meng, J. Wen, M. Iqbal, D. Jia, Y. Yu, and Z. Li, 2018: Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010). Int. J. Climatol., 38, e48e56, https://doi.org/10.1002/joc.5350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., C. Liu, Y. Tang, and Y. Yang, 2007: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res., 112, D12110, https://doi.org/10.1029/2006JD008161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., and T. Yao, 2006: Uplifting of Tibetan Plateau with its environmental effects. Diqiu Kexue Jinzhan, 21, 451458.

All Time Past Year Past 30 Days
Abstract Views 96 96 96
Full Text Views 15 15 15
PDF Downloads 29 29 29

Dynamics of Evapotranspiration and Variations in Different Land-Cover Regions over the Tibetan Plateau during 1961–2014

View More View Less
  • 1 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
  • 2 State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
  • 3 University of Chinese Academy of Sciences, Beijing, China
  • 4 Yunnan Climate Center, Kunming, China
  • 5 Chengdu Meteorological Bureau, Chengdu, China
© Get Permissions
Restricted access

Abstract

In this study, the spatiotemporal changes and driving factors of evapotranspiration (ET) over the Tibetan Plateau (TP) are assessed from 1961 to 2014, based on a revised generalized nonlinear complementary (nonlinear-CR) model. The average annual ET on the TP was 328 mm. The highest ET value (711 mm) was found in the forest region in the southeastern part of the TP, and the lowest value (151 mm) was found in the desert region in the northwestern part of the TP. In terms of the contribution of different subregions to the total amount of ET for the whole plateau, the meadow and steppe regions contributed the most to the total amount of ET of TP, accounting for 30% and 18.5%, respectively. The interannual ET presented a significant increasing trend with a value of 0.26 mm yr−1 from 1961 to 2014, and a significant positive ET trend was found over 35% of the region, mainly in the southeastern part of the plateau. The increasing trend of ET in swamp areas was the largest, while that in the desert areas was the smallest. In terms of the seasonality, the ET over the plateau and different land-cover regions increased the most in summer, followed by spring, while the change in ET in winter was not obvious. The energy factors dominated the long-term change in the annual ET over the plateau. In addition, the available energy is the controlling factor for ET changes in humid areas such as forests and shrublands. Energy and water factors together dominate the ET changes in arid areas.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Genxu Wang, wanggx@scu.edu.cn; Zhaoyong Hu, huzy@scu.edu.cn

Abstract

In this study, the spatiotemporal changes and driving factors of evapotranspiration (ET) over the Tibetan Plateau (TP) are assessed from 1961 to 2014, based on a revised generalized nonlinear complementary (nonlinear-CR) model. The average annual ET on the TP was 328 mm. The highest ET value (711 mm) was found in the forest region in the southeastern part of the TP, and the lowest value (151 mm) was found in the desert region in the northwestern part of the TP. In terms of the contribution of different subregions to the total amount of ET for the whole plateau, the meadow and steppe regions contributed the most to the total amount of ET of TP, accounting for 30% and 18.5%, respectively. The interannual ET presented a significant increasing trend with a value of 0.26 mm yr−1 from 1961 to 2014, and a significant positive ET trend was found over 35% of the region, mainly in the southeastern part of the plateau. The increasing trend of ET in swamp areas was the largest, while that in the desert areas was the smallest. In terms of the seasonality, the ET over the plateau and different land-cover regions increased the most in summer, followed by spring, while the change in ET in winter was not obvious. The energy factors dominated the long-term change in the annual ET over the plateau. In addition, the available energy is the controlling factor for ET changes in humid areas such as forests and shrublands. Energy and water factors together dominate the ET changes in arid areas.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Genxu Wang, wanggx@scu.edu.cn; Zhaoyong Hu, huzy@scu.edu.cn
Save