• Abbasnezhadi, K., A. N. Rousseau, K. A. Koenig, Z. Zahmatkesh, and A. M. Wruth, 2019: Hydrological assessment of meteorological network density through data assimilation simulation. J. Hydrol., 569, 844858, https://doi.org/10.1016/j.jhydrol.2018.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., and D. P. Lettenmaier, 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872886, https://doi.org/10.1016/j.advwatres.2005.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, 2002: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Proc., 50, 174188, https://doi.org/10.1109/78.978374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadzadeh, M., and B. Tolson, 2009: A new multi-objective algorithm, Pareto archived DDS. 11th Annual Conf. on Genetic and Evolutionary Computation Conf. (GECCO 2009), New York, NY, Association for Computing Machinery, 1963–1966, https://doi.org/10.1145/1570256.1570259.

    • Crossref
    • Export Citation
  • Asadzadeh, M., and B. Tolson, 2013: Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Eng. Optim., 45, 14891509, https://doi.org/10.1080/0305215X.2012.748046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A. P., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp., https://nsidc.org/sites/nsidc.org/files/technical-references/nsidc_special_report_11.pdf.

  • Boluwade, A., K.-Y. Zhao, T. Stadnyk, and P. Rasmussen, 2018: Towards validation of the Canadian Precipitation Analysis (CaPA) for hydrologic modeling applications in the Canadian Prairies. J. Hydrol., 556, 12441255, https://doi.org/10.1016/j.jhydrol.2017.05.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boni, G., F. Castelli, S. Gabellani, G. Machiavello, and R. Rudari, 2010: Assimilation of MODIS snow cover and real time snow depth point data in a snow dynamic model. 2010 IEEE Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1788–1791, https://doi.org/10.1109/IGARSS.2010.5648989.

    • Crossref
    • Export Citation
  • Bouda, M., A. N. Rousseau, B. Konan, P. Gagnon, and S. J. Gumiere, 2012: Bayesian uncertainty analysis of the distributed hydrological model HYDROTEL. J. Hydrol. Eng., 17, 10211032, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouda, M., A. N. Rousseau, S. J. Gumiere, P. Gagnon, B. Konan, and R. Moussa, 2014: Implementation of an automatic calibration procedure for HYDROTEL based on prior OAT sensitivity and complementary identifiability analysis. Hydrol. Processes, 28, 39473961, https://doi.org/10.1002/hyp.9882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brabets, T. P., and M. A. Walvoord, 2009: Trends in streamflow in the Yukon River Basin from 1944 to 2005 and the influence of the pacific decadal oscillation. J. Hydrol., 371, 108119, https://doi.org/10.1016/j.jhydrol.2009.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, https://doi.org/10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., A. G. Slater, A. P. Barrett, L. E. Hay, G. J. Mccabe, B. Rajagopalan, and G. H. Leavesley, 2006: Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour., 29, 12091221, https://doi.org/10.1016/j.advwatres.2005.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deacu, D., V. Fortin, E. Klyszejko, C. Spence, and P. Blanken, 2012: Predicting the net basin supply to the Great Lakes with a hydrometeorological model. J. Hydrometeor., 13, 17391759, https://doi.org/10.1175/JHM-D-11-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., R. H. Reichle, K. R. Arsenault, P. R. Houser, S. Kumar, N. E. C. Verhoest, and V. R. N. Pauwels, 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, https://doi.org/10.1029/2011WR010588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., C. M. Dohmen-Janssen, and M. J. Booij, 2005: Appropriate spatial sampling of rainfall or flow simulation. Hydrol. Sci. J., 50, 279298, https://doi.org/10.1623/hysj.50.2.279.61801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., D. Vasiljevic, and P. Viterbo, 2004: ECMWF’s global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor., 43, 12821294, https://doi.org/10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., and S. A. Margulis, 2008: Effects of uncertainty magnitude and accuracy on assimilation of multi-scale measurements for snowpack characterization. J. Geophys. Res., 113, D02105, https://doi.org/10.1029/2007JD008662.

    • Search Google Scholar
    • Export Citation
  • Eum, H., D. Yonas, and T. Prowse, 2014: Uncertainty in modelling the hydrologic responses of a large watershed: A case study of the Athabasca River Basin, Canada. Hydrol. Processes, 28, 42724293, https://doi.org/10.1002/hyp.10230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, J. P., R. Turcotte, S. Massicotte, R. Moussa, J. Fitzback, and J. P. Villeneuve, 2001a: Distributed watershed model compatible with remote sensing and GIS data, I: Description of model. J. Hydrol. Eng., 6, 9199, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(91).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, J. P., R. Turcotte, S. Massicotte, R. Moussa, J. Fitzback, and J. P. Villeneuve, 2001b: A distributed watershed model compatible with remote sensing and GIS data, II: Application to Chaudière Watershed. J. Hydrol. Eng., 6, 100108, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(100).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., G. Roy, N. Donaldson, and A. Mahidjiba, 2015: Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA). J. Hydrol., 531, 296307, https://doi.org/10.1016/j.jhydrol.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foulon, E., M. Blanchette, and A. N. Roussea, 2019: Sensitivity and uncertainty analysis of a semi-distributed model used for the quantitative assessment of watershed-scale hydrological services of wetlands. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H53L-1951, https://ui.adsabs.harvard.edu/abs/2019AGUFM.H53L1951F/abstract.

  • Gbambie, A. S. B., A. Poulin, M. A. Boucher, and R. Arsenault, 2017: Added value of alternative information in interpolated precipitation datasets for hydrology. J. Hydrometeor., 18, 247264, https://doi.org/10.1175/JHM-D-16-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelb, A., 1974: Optimal linear filtering. Applied Optimal Estimation, MIT Press, 102–155.

  • Grünewald, T., and M. Lehning, 2015: Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale. Hydrol. Processes, 29, 17171728, https://doi.org/10.1002/hyp.10295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Haghnegahdar, A., B. A. Tolson, B. Davison, F. R. Seglenieks, E. Klyszejko, and E. D. Soulis, 2014: Calibrating Environment Canada’s MESH modelling system over the Great Lakes basin. Atmos.–Ocean, 52, 281293, https://doi.org/10.1080/07055900.2014.939131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanes, C. C., P. Jain, M. Flannigan, and G. Roy, 2016: Evaluation of the Canadian Precipitation Analysis (CaPA) to improve forest fire danger rating. Int. J. Wildland Fire, 26, 509522, https://doi.org/10.1071/WF16170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmert, J., and et al. , 2018: Review of snow data assimilation methods for hydrological, land surface, meteorological and climate models: Results from a COST HarmoSnow survey. Geosciences, 8, 489, https://doi.org/10.3390/geosciences8120489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., A. J. Newman, M. P. Clark, A. W. Wood, and X. Zheng, 2017: Evaluation of snow data assimilation using the ensemble Kalman filter for seasonal streamflow prediction in the western United States. Hydrol. Earth Syst. Sci., 21, 635650, https://doi.org/10.5194/hess-21-635-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisenring, M., and H. Moradkhani, 2011: Snow water equivalent prediction using Bayesian data assimilation methods. Stochastic Environ. Res. Risk Assess., 25, 253270, https://doi.org/10.1007/s00477-010-0445-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., D. P. Lettenmaier, S. A. Margulis, and K. Andreadis, 2019: The value of accurate high-resolution and spatially continuous snow information to streamflow forecasts. J. Hydrometeor., 20, 731749, https://doi.org/10.1175/JHM-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., R. A. Sr. Pielke, and E. M. Greene, 1999: Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res., 104, 19 55919 567, https://doi.org/10.1029/1999JD900055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. D. Peters-Lidard, S. Kumar, J. L. Foster, M. Shaw, Y. Tian, and G. M. Fall, 2013: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208227, https://doi.org/10.1016/j.advwatres.2013.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. R. Fassnacht, J. T. Heath, K. N. Musselman, J. Revuelto, J. Latron, E. Morán-Tejeda, and T. Jonas, 2013: Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour., 55, 4052, https://doi.org/10.1016/j.advwatres.2012.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, J., D. Gustafsson, F. Hüsler, and T. Jonas, 2014: Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res., 50, 78167835, https://doi.org/10.1002/2014WR015302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., B. Brasnett, and S. Gagnon, 2007: A Canadian precipitation analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, https://doi.org/10.3137/ao.v450101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matott, L. S., 2017: OSTRICH: An optimization software tool. Documentation and user’s guide, version 17.12.19. University at Buffalo Center for Computational Research Doc., 79 pp., www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html.

  • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 10371056, https://doi.org/10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., 2008: Hydrologic remote sensing and land surface data assimilation. Sensors, 8, 29863004, https://doi.org/10.3390/s8052986.

  • Nagler, T., H. Rott, P. Malcher, and F. Müller, 2008: Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens. Environ., 112, 14081420, https://doi.org/10.1016/j.rse.2007.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, P., A. N. Rousseau, C. Paniconi, and D. F. Nadeau, 2014: An algorithm for delineating and extracting hillslopes and hillslope width functions from gridded elevation data. J. Hydrol. Eng., 19, 366374, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piazzi, G., G. Thirel, L. Campo, and S. Gabellani, 2018: A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment. Cryosphere, 12, 22872306, https://doi.org/10.5194/tc-12-2287-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierre, A., S. Jutras, S. Craig, J. Kochendorfer, V. Fortin, and F. Anctil, 2019: Evaluation of catch efficiency transfer functions for unshielded and single-alter-shielded solid precipitation measurements. J. Atmos. Oceanic Technol., 36, 865881, https://doi.org/10.1175/JTECH-D-18-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Razavi, S., R. Sheikholeslami, H. V. Gupta, and A. Haghnegahdar, 2019: VARS-TOOL: A toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis. Environ. Modell. Software, 112, 95107, https://doi.org/10.1016/j.envsoft.2018.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau, A. N., J.-P. Fortin, R. Turcotte, A. Royer, S. Savary, F. Quévy, P. Noël, and C. Paniconi, 2011: PHYSITEL, A specialized GIS for supporting the implementation of distributed hydrological models. Water News, Vol. 31, No. 1, Canadian Water Resources Association, Calgary, AB, Canada, 18–20.

  • Saloranta, T. M., 2016: Operational snow mapping with simplified data assimilation using the seNorge snow model. J. Hydrol., 538, 314325, https://doi.org/10.1016/j.jhydrol.2016.03.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samuel, J., A. N. Rousseau, K. Abbasnezhadi, and S. Savary, 2019: Development and evaluation of a hydrologic data-assimilation scheme for short-range flow and inflow forecasts in a data-sparse high-latitude region using a distributed model and ensemble Kalman filtering. Adv. Water Resour., 130, 198220, https://doi.org/10.1016/j.advwatres.2019.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and M. P. Clark, 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, https://doi.org/10.1175/JHM505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, W. L., 2013: Ecoclimatic zonation of Yukon (Canada) and ecoclinal variation in vegetation. Arctic, 66, 5267, https://doi.org/10.14430/arctic4266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., Z. L. Yang, G. Y. Niu, and R. E. Dickinson, 2008: Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J. Geophys. Res., 113, D08120, https://doi.org/10.1029/2007JD009232.

    • Search Google Scholar
    • Export Citation
  • Tolson, B. A., and C. A. Shoemaker, 2007: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res., 43, W01413, https://doi.org/10.1029/2005WR004723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turcotte, R., J.-P. Fortin, A. N. Rousseau, S. Massicotte, and J.-P. Villeneuve, 2001: Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J. Hydrol., 240, 225242, https://doi.org/10.1016/S0022-1694(00)00342-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turcotte, R., A. N. Rousseau, J.-P. Fortin, and J.-P. Villeneuve, 2003: A process-oriented, multiple-objective calibration strategy accounting for model structure. Advances in Calibration of Watershed Models, Q. Duan et al., Eds., Water Science and Applications Series, Vol. 6, Amer. Geophys. Union, 153–163, https://agupubs.onlinelibrary.wiley.com/doi/book/10.1029/WS006.

    • Crossref
    • Export Citation
  • Turcotte, R., L. G. Fortin, V. Fortin, J.-P. Fortin, and J.-P. Villeneuve, 2007: Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada. Nord. Hydrol., 38, 211234, https://doi.org/10.2166/nh.2007.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turcotte, R., T.-C. F. Filion, P. Lacombe, V. Fortin, A. Roy, and A. Royer, 2010: Simulation hydrologique des derniers jours de la crue de printemps: Le problème de la neige manquante. Hydrol. Sci. J., 55, 872882, https://doi.org/10.1080/02626667.2010.503933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., and D. Marks, 2014: Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site. Water Resour. Res., 50, 293305, https://doi.org/10.1002/2012WR013038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, J. S., S. Razavi, B. R. Bonsal, H. S. Wheater, and Z. E. Asong, 2017: Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrol. Earth Syst. Sci., 21, 21632185, https://doi.org/10.5194/hess-21-2163-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., S. K. Frey, A. Boluwade, A. R. Erler, O. Khader, D. R. Lapen, and E. Sudicky, 2019: Evaluation of variability among different precipitation products in the Northern Great Plains. J. Hydrol. Reg. Stud., 24, 100608, https://doi.org/10.1016/j.ejrh.2019.100608.

    • Search Google Scholar
    • Export Citation
  • Zhao, K.-Y., 2013: Validation of the Canadian Precipitation Analysis (CaPA) for hydrological modelling in the Canadian Prairies. M.S. thesis, Dept. of Civil Engineering, University of Manitoba, 173 pp.

All Time Past Year Past 30 Days
Abstract Views 162 162 22
Full Text Views 54 54 2
PDF Downloads 71 71 3

Verification of Regional Deterministic Precipitation Analysis Products Using Snow Data Assimilation for Application in Meteorological Network Assessment in Sparsely Gauged Nordic Basins

View More View Less
  • 1 Institut National de la Recherche Scientifique, Centre eau terre et environnement, Quebec, Quebec, Canada
  • | 2 YukonU Research Centre, Yukon University, Whitehorse, Yukon, Canada
© Get Permissions
Restricted access

Abstract

Sparse precipitation information can result in uncertainties in hydrological modeling practices. Precipitation observation network augmentation is one way to reduce the uncertainty. Meanwhile, in basins with snowpack-dominated hydrology, in the absence of a high-density precipitation observation network, assimilation of in situ and remotely sensed measurements of snowpack state variables can also provide the possibility to reduce flow estimation uncertainty. Similarly, assimilation of existing precipitation observations into gridded numerical precipitation products can alleviate the adverse effects of missing information in poorly instrumented basins. In Canada, the Regional Deterministic Precipitation Analysis (RDPA) data from the Canadian Precipitation Analysis (CaPA) system have been increasingly applied for flow estimation in sparsely gauged Nordic basins. Moreover, CaPA-RDPA data have also been applied to establish observational priorities for augmenting precipitation observation networks. However, the accuracy of the assimilated data should be validated before being applicable in observation network assessment. The assimilation of snowpack state variables has proven to significantly improve streamflow estimates, and therefore, it can provide the benchmark against which the impact of assimilated precipitation data on streamflow simulation can be compared. Therefore, this study introduces a parsimonious framework for performing a proxy validation of the precipitation-assimilated products through the application of snow assimilation in physically based hydrologic models. This framework is demonstrated to assess the observation networks in three boreal basins in Yukon, Canada. The results indicate that in most basins, the gridded analysis products generally enjoyed the level of accuracy required for accurate flow simulation and therefore were applied in the meteorological network assessment in those cases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0106.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kian Abbasnezhadi, kian.abbasnezhadi@canada.ca

Abstract

Sparse precipitation information can result in uncertainties in hydrological modeling practices. Precipitation observation network augmentation is one way to reduce the uncertainty. Meanwhile, in basins with snowpack-dominated hydrology, in the absence of a high-density precipitation observation network, assimilation of in situ and remotely sensed measurements of snowpack state variables can also provide the possibility to reduce flow estimation uncertainty. Similarly, assimilation of existing precipitation observations into gridded numerical precipitation products can alleviate the adverse effects of missing information in poorly instrumented basins. In Canada, the Regional Deterministic Precipitation Analysis (RDPA) data from the Canadian Precipitation Analysis (CaPA) system have been increasingly applied for flow estimation in sparsely gauged Nordic basins. Moreover, CaPA-RDPA data have also been applied to establish observational priorities for augmenting precipitation observation networks. However, the accuracy of the assimilated data should be validated before being applicable in observation network assessment. The assimilation of snowpack state variables has proven to significantly improve streamflow estimates, and therefore, it can provide the benchmark against which the impact of assimilated precipitation data on streamflow simulation can be compared. Therefore, this study introduces a parsimonious framework for performing a proxy validation of the precipitation-assimilated products through the application of snow assimilation in physically based hydrologic models. This framework is demonstrated to assess the observation networks in three boreal basins in Yukon, Canada. The results indicate that in most basins, the gridded analysis products generally enjoyed the level of accuracy required for accurate flow simulation and therefore were applied in the meteorological network assessment in those cases.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0106.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kian Abbasnezhadi, kian.abbasnezhadi@canada.ca

Supplementary Materials

    • Supplemental Materials (PDF 723.08 KB)
Save