• Al Bitar, A., and Coauthors, 2017: The global SMOS Level 3 daily soil moisture and brightness temperature maps. Earth Syst. Sci. Data, 9, 293315, https://doi.org/10.5194/essd-9-293-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashby, S. F., and R. D. Falgout, 1996: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng., 124, 145159, https://doi.org/10.13182/NSE96-A24230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhme, T., and Coauthors, 2011: Long-term evaluation of COSMO forecasting using combined observational data of the GOP period. Meteor. Z., 20, 119132, https://doi.org/10.1127/0941-2948/2011/0225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CATDS, 2016: CATDS-PDC L3SM Aggregated - 3-day, 10-day and monthly global map of soil moisture values from SMOS satellite. CATDS (CNES, IFREMER, CESBIO), accessed 10 June 2020, https://doi.org/10.12770/b57e0d3d-e6e4-4615-b2ba-6feb7166e0e6.

    • Crossref
    • Export Citation
  • Condon, L. E., A. L. Atchley, and R. M. Maxwell, 2020: Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun., 11, 873, https://doi.org/10.1038/s41467-020-14688-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, A., S. Valcke, and L. Coquart, 2017: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3. 0. Geosci. Model Dev., 10, 32973308, https://doi.org/10.5194/gmd-10-3297-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, R. E., A. G. Hazen, B. L. McGlynn, and K. G. Jencso, 2014: Vegetation and topographic influences on the connectivity of shallow groundwater between hillslopes and streams. Ecohydrology, 7, 887895, https://doi.org/10.1002/eco.1409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. Li, and G. Miguez-Macho, 2013: Global patterns of groundwater table depth. Science, 339, 940943, https://doi.org/10.1126/science.1229881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

  • Fatichi, S., and C. Pappas, 2017: Constrained variability of modeled T: ET ratio across biomes. Geophys. Res. Lett., 44, 67956803, https://doi.org/10.1002/2017GL074041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M., and D. Sulla-Menashe, 2019: MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, accessed 11 February 2020, https://doi.org/10.5067/MODIS/MCD12Q1.006.

    • Crossref
    • Export Citation
  • Gasper, F., K. Goergen, P. Shrestha, M. Sulis, J. Rihani, M. Geimer, and S. J. Kollet, 2014: Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment – A case study on JUQUEEN (IBM Blue Gene/Q). Geosci. Model Dev., 7, 25312543, https://doi.org/10.5194/gmd-7-2531-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. P., D. Noone, and G. Bowen, 2015: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175177, https://doi.org/10.1126/science.aaa5931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gribovszki, Z., J. Szilágyi, and P. Kalicz, 2010: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation–A review. J. Hydrol., 385, 371383, https://doi.org/10.1016/j.jhydrol.2010.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquette, E., A. Al Bitar, A. Mialon, Y. H. Kerr, A. Quesney, F. Cabot, and P. Richaume, 2010: SMOS CATDS level 3 global products over land. Proc. SPIE, 7824, https://doi.org/10.1117/12.865093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. E., and C. S. Woodward, 2001: Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv. Water Resour., 24, 763774, https://doi.org/10.1016/S0309-1708(00)00075-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, and M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, https://doi.org/10.1109/36.942551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., E. Jacquette, A. Al Bitar, F. Cabot, A. Mialon, P. Richaume, A. Quesney, and L. Berthon, 2013: CATDS SMOS L3 soil moisture retrieval processor Algorithm Theoretical Baseline Doc. SO-TN-CBSA-GS-0029, 73 pp., http://www.cesbio.ups-tlse.fr/SMOS_blog/wp-content/uploads/2013/08/ATBD_L3_rev2_draft.pdf.

  • Kerr, Y. H., and Coauthors, 2016: Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ., 180, 4063, https://doi.org/10.1016/j.rse.2016.02.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keune, J., F. Gasper, K. Goergen, A. Hense, P. Shrestha, M. Sulis, and S. Kollet, 2016: Studying the influence of groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003. J. Geophys. Res., 121, 13 30113 325, https://doi.org/10.1002/2016JD025426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollet, S., and R. M. Maxwell, 2008: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, https://doi.org/10.1029/2007WR006004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., and R. M. Maxwell, 2006: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29, 945958, https://doi.org/10.1016/j.advwatres.2005.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., M. Huang, Y. Qian, and X. Liang, 2011: Climate–soil–vegetation control on groundwater table dynamics and its feedbacks in a climate model. Climate Dyn., 36, 5781, https://doi.org/10.1007/s00382-010-0746-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindau, R., and C. Simmer, 2013: On correcting precipitation as simulated by the regional climate model COSMO-CLM with daily rain gauge observations. Meteor. Atmos. Phys., 119, 3142, https://doi.org/10.1007/s00703-012-0215-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manoli, G., and Coauthors, 2019: Magnitude of urban heat islands largely explained by climate and population. Nature, 573, 5560, https://doi.org/10.1038/s41586-019-1512-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., 2013: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling. Adv. Water Resour., 53, 109117, https://doi.org/10.1016/j.advwatres.2012.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and S. J. Kollet, 2008: Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci., 1, 665669, https://doi.org/10.1038/ngeo315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and L. E. Condon, 2016: Connections between groundwater flow and transpiration partitioning. Science, 353, 377380, https://doi.org/10.1126/science.aaf7891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R., Y. Knyazikhin, and T. Park, 2015: MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, accessed 11 February 2020, https://doi.org/10.5067/MODIS/MCD15A2H.006.

    • Crossref
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. Biogeosci., 113, G01021, https://doi.org/10.1029/2007JG000563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, M., M. Sulis, and S. J. Kollet, 2014: The concept of dual-boundary forcing in land surface-subsurface interactions of the terrestrial hydrologic and energy cycles. Water Resour. Res., 50, 85318548, https://doi.org/10.1002/2014WR015738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakumura, C., S. Bettadpur, and S. Bruinsma, 2014: Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett., 41, 13891397, https://doi.org/10.1002/2013GL058632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., and F. J. Leij, 1998: Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci., 163, 765779, https://doi.org/10.1097/00010694-199810000-00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, W. H., and S. Jasechko, 2014: Transpiration in the global water cycle. Agric. For. Meteor., 189–190, 115117, https://doi.org/10.1016/j.agrformet.2014.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., 2019: TerrSysMP pre-processing and post-processing system. CRC/TR32 Database (TR32DB), accessed 10 April 2019 https://doi.org/10.5880/TR32DB.37.

    • Crossref
    • Export Citation
  • Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer, 2014: A scale-consistent terrestrial system modeling platform based on COSMO, CLM and ParFlow. Mon. Wea. Rev., 142, 34663483, https://doi.org/10.1175/MWR-D-14-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, C. Simmer, and S. Kollet, 2015: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model. Hydrol. Earth Syst. Sci. Discuss., 12, 64376466, https://doi.org/10.5194/hessd-12-6437-2015.

    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, C. Simmer, and S. Kollet, 2018a: Effects of horizontal grid resolution on evapotranspiration partitioning using TerrSysMP. J. Hydrol., 557, 910915, https://doi.org/10.1016/j.jhydrol.2018.01.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., W. Kurtz, G. Vogel, J. P. Schulz, M. Sulis, H. J. Hendricks Franssen, S. Kollet, and C. Simmer, 2018b: Connection between root zone soil moisture and surface energy flux partitioning using modeling, observations, and data assimilation for a temperate grassland site in Germany. J. Geophys. Res. Biogeosci., 123, 28392862, https://doi.org/10.1029/2016JG003753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., and P. Döll, 2010: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol., 384, 198217, https://doi.org/10.1016/j.jhydrol.2009.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann, 2010: Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci., 14, 18631880, https://doi.org/10.5194/hess-14-1863-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmer, C., and Coauthors, 2015: Monitoring and modeling the terrestrial system from pores to catchments: The transregional collaborative research center on patterns in the soil–vegetation–atmosphere system. Bull. Amer. Meteor. Soc., 96, 17651787, https://doi.org/10.1175/BAMS-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulis, M., M. Langensiepen, P. Shrestha, A. Schickling, C. Simmer, and S. J. Kollet, 2015: Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes. J. Hydrometeor., 16, 517533, https://doi.org/10.1175/JHM-D-14-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulis, M., J. Keune, P. Shrestha, C. Simmer, and S. J. Kollet, 2018: Quantifying the impact of subsurface-land surface physical processes on the predictive skill of subseasonal mesoscale atmospheric simulations. J. Geophys. Res. Atmos., 123, 91319151, https://doi.org/10.1029/2017JD028187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., 2012: GRACE monthly land water mass grids NETCDF RELEASE 5.0, version 5.0. PO.DAAC, accessed 10 May 2020, https://doi.org/10.5067/TELND-NC005.

  • Swenson, S. C., and J. Wahr, 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. Beek, and M. F. P. Bierkens, 2012: Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., I. E. M. de Graaf, and L. P. H. van Beek, 2016: High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst., 8, 735763, https://doi.org/10.1002/2015MS000618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., A. Ducharne, F. Cheruy, M. H. Lo, and J. Y. Grandpeix, 2018: Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model. Climate Dyn., 50, 35053522, https://doi.org/10.1007/s00382-017-3820-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 143 143 122
Full Text Views 57 57 52
PDF Downloads 75 75 68

Clouds and Vegetation Modulate Shallow Groundwater Table Depth

View More View Less
  • 1 Institute of Geosciences, Meteorology Department, University of Bonn, Bonn, Germany
© Get Permissions
Restricted access

Abstract

A 10-yr simulation of shallow groundwater table (GWT) depth over a temperate region in northwestern Europe, using a physics-based integrated hydrological model at kilometer scale, exhibits a strong seasonal cycle. This is also well captured in terms of near-surface soil moisture anomalies, terrestrial water storage anomalies, and shallow GWT depth anomalies from observations over the region. The modeled monthly anomaly of GWT depth exhibits a statistically significant (p < 0.05) moderate positive/negative correlation with non-rain- and rain-affected monthly anomalies of incoming solar radiation. The vegetation cover also produces a strong local control on the variability of shallow GWT depth. Thus, much of the variability in the simulated seasonal cycle of shallow GWT depth could be linked to the distribution of clouds and vegetation. The spatiotemporal distribution of clouds, partly influenced by the Rhine Massif, modulates the seasonal variability of incoming solar radiation and precipitation over the region. Particularly, the southwestern and northern part of the Rhine Massif divided by the Rhine Valley exhibits a dipole behavior with relatively high (low) shallow GWT depth fluctuations, associated with positive (negative) anomaly of incoming solar radiation and negative (positive) anomaly of precipitation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0171.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Prabhakar Shrestha, pshrestha@uni-bonn.de

Abstract

A 10-yr simulation of shallow groundwater table (GWT) depth over a temperate region in northwestern Europe, using a physics-based integrated hydrological model at kilometer scale, exhibits a strong seasonal cycle. This is also well captured in terms of near-surface soil moisture anomalies, terrestrial water storage anomalies, and shallow GWT depth anomalies from observations over the region. The modeled monthly anomaly of GWT depth exhibits a statistically significant (p < 0.05) moderate positive/negative correlation with non-rain- and rain-affected monthly anomalies of incoming solar radiation. The vegetation cover also produces a strong local control on the variability of shallow GWT depth. Thus, much of the variability in the simulated seasonal cycle of shallow GWT depth could be linked to the distribution of clouds and vegetation. The spatiotemporal distribution of clouds, partly influenced by the Rhine Massif, modulates the seasonal variability of incoming solar radiation and precipitation over the region. Particularly, the southwestern and northern part of the Rhine Massif divided by the Rhine Valley exhibits a dipole behavior with relatively high (low) shallow GWT depth fluctuations, associated with positive (negative) anomaly of incoming solar radiation and negative (positive) anomaly of precipitation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0171.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Prabhakar Shrestha, pshrestha@uni-bonn.de

Supplementary Materials

    • Supplemental Materials (PDF 730.92 KB)
Save