The Role of Vegetation in Flash Drought Occurrence: A Sensitivity Study Using Community Earth System Model, Version 2

Liang Chen Climate and Atmospheric Sciences Section, Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana–Champaign, Champaign, Illinois

Search for other papers by Liang Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1553-2846
,
Trent W. Ford Climate and Atmospheric Sciences Section, Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana–Champaign, Champaign, Illinois

Search for other papers by Trent W. Ford in
Current site
Google Scholar
PubMed
Close
, and
Priyanka Yadav Department of Geography, University of Delaware, Newark, Delaware

Search for other papers by Priyanka Yadav in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flash droughts are noted by their unusually rapid rate of onset or intensification, which makes it difficult to anticipate and prepare for them, thus resulting in severe impacts. Although the development of flash drought can be associated with certain atmospheric conditions, vegetation also plays a role in propagating flash drought. This study examines the climatology of warm season (March–September) flash drought occurrence in the United States between 1979 and 2014, and quantifies the possible impacts of vegetation on flash drought based on a set of sensitivity experiments using the Community Earth System Model, version 2 (CESM2). With atmospheric nudging, CESM2 well captures historical flash drought. Compared with NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and National Climate Assessment–Land Data Assimilation System (NCA-LDAS), CESM2 shows agreement on the high flash drought frequency in the Great Plains and southeastern United States, but overestimates flash drought occurrence in the Midwest. The vegetation sensitivity experiments suggest that vegetation greening can significantly increase the flash drought frequency in the Great Plains and the western United States during the warm seasons through enhanced evapotranspiration. However, flash drought occurrence is not significantly affected by vegetation phenology in the eastern United States and Midwest due to weak land–atmosphere coupling. In response to vegetation greening, the extent of flash drought also increases, but the duration of flash drought is not sensitive to greening. This study highlights the importance of vegetation in flash drought development, and provides insights for improving flash drought monitoring and early warning.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0214.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liang Chen, liangch@illinois.edu

Abstract

Flash droughts are noted by their unusually rapid rate of onset or intensification, which makes it difficult to anticipate and prepare for them, thus resulting in severe impacts. Although the development of flash drought can be associated with certain atmospheric conditions, vegetation also plays a role in propagating flash drought. This study examines the climatology of warm season (March–September) flash drought occurrence in the United States between 1979 and 2014, and quantifies the possible impacts of vegetation on flash drought based on a set of sensitivity experiments using the Community Earth System Model, version 2 (CESM2). With atmospheric nudging, CESM2 well captures historical flash drought. Compared with NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and National Climate Assessment–Land Data Assimilation System (NCA-LDAS), CESM2 shows agreement on the high flash drought frequency in the Great Plains and southeastern United States, but overestimates flash drought occurrence in the Midwest. The vegetation sensitivity experiments suggest that vegetation greening can significantly increase the flash drought frequency in the Great Plains and the western United States during the warm seasons through enhanced evapotranspiration. However, flash drought occurrence is not significantly affected by vegetation phenology in the eastern United States and Midwest due to weak land–atmosphere coupling. In response to vegetation greening, the extent of flash drought also increases, but the duration of flash drought is not sensitive to greening. This study highlights the importance of vegetation in flash drought development, and provides insights for improving flash drought monitoring and early warning.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0214.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liang Chen, liangch@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 6.94 MB)
Save
  • Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 10351056, https://doi.org/10.1175/JHM-D-12-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. I. Christian, R. A. Wakefield, J. A. Otkin, E. H. Hunt, and D. P. Brown, 2019: The evolution, propagation, and spread of flash drought in the central United States during 2012. Environ. Res. Lett., 14, 084025, https://doi.org/10.1088/1748-9326/ab2cc0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and J. Sheffield, 2018: Climate change and drought: The soil moisture perspective. Curr. Climate Change Rep., 4, 180191, https://doi.org/10.1007/s40641-018-0095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blankenship, C. B., J. L. Case, W. L. Crosson, and B. T. Zavodsky, 2018: Correction of forcing-related spatial artifacts in a land surface model by satellite soil moisture data assimilation. IEEE Geosci. Remote Sens. Lett., 15, 498502, https://doi.org/10.1109/LGRS.2018.2805259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235255, https://doi.org/10.5194/gmd-11-235-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2017: Impacts of land-use/land-cover change on afternoon precipitation over North America. J. Climate, 30, 21212140, https://doi.org/10.1175/JCLI-D-16-0589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. G., J. Gottschalck, A. Hartman, D. Miskus, R. Tinker, and A. Artusa, 2019: Flash drought characteristics based on U.S. Drought Monitor. Atmosphere, 10, 498, https://doi.org/10.3390/atmos10090498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Christian, J. I., J. B. Basara, J. A. Otkin, E. D. Hunt, R. A. Wakefield, P. X. Flanagan, and X. Xiao, 2019: A methodology for flash drought identification: Application of flash drought frequency across the United States. J. Hydrometeor., 20, 833846, https://doi.org/10.1175/JHM-D-18-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Condon, L. E., and R. M. Maxwell, 2019: Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv., 5, eaav4574, https://doi.org/10.1126/sciadv.aav4574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crausbay, S. D., and Coauthors, 2017: Defining ecological drought for the twenty-first century. Bull. Amer. Meteor. Soc., 98, 25432550, https://doi.org/10.1175/BAMS-D-16-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., H. Wang, R. D. Koster, S. D. Schubert, Y. Chang, and J. Marshak, 2020: Prediction skill of the 2012 U.S. great plains flash drought in Subseasonal Experiment (SubX) models. J. Climate, 33, 62296253, https://doi.org/10.1175/JCLI-D-19-0863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2014: Comparison and application of multiple methods for temporal interpolation of daily soil moisture. Int. J. Climatol., 34, 26042621, https://doi.org/10.1002/joc.3862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and C. F. Labosier, 2017: Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteor., 247, 414423, https://doi.org/10.1016/j.agrformet.2017.08.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., D. B. McRoberts, S. M. Quiring, and R. E. Hall, 2015: On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys. Res. Lett., 42, 97909798, https://doi.org/10.1002/2015GL066600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forzieri, G., and Coauthors, 2018: Evaluating the interplay between biophysical processes and leaf area changes in land surface models. J. Adv. Model. Earth Syst., 10, 11021126, https://doi.org/10.1002/2018MS001284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerken, T., G. T. Bromley, B. L. Ruddell, S. Williams, and P. C. Stoy, 2018: Convective suppression before and during the United States Northern Great Plains flash drought of 2017. Hydrol. Earth Syst. Sci., 22, 41554163, https://doi.org/10.5194/hess-22-4155-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. Callaghan, V. E. Larson, C. M. Zarzycki, J. T. Bacmeister, P. H. Lauritzen, P. A. Bogenschutz, and R. B. Neale, 2018: Regional climate simulations with the Community Earth System Model. J. Adv. Model. Earth Syst., 10, 12451265, https://doi.org/10.1002/2017MS001227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavg1_2d_lnd_Nx: 2d,1-hourly,time-averaged, single-level, assimilation, land surface diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 20 January 2020 https://doi.org/10.5067/RKPHT8KC1Y1T.

    • Crossref
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, E. D., K. G. Hubbard, D. A. Wilhite, T. J. Arkebauer, and A. L. Dutcher, 2009: The development and evaluation of a soil moisture index. Int. J. Climatol., 29, 747759, https://doi.org/10.1002/joc.1749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, E. D., M. Svoboda, B. Wardlow, K. Hubbard, M. Hayes, and T. Arkebauer, 2014: Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agric. For. Meteor., 191, 111, https://doi.org/10.1016/j.agrformet.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasinski, M. F., and Coauthors, 2018: NCA-LDAS Noah-3.3 land surface model L4 daily 0.125 × 0.125 degree V2.0. Goddard Earth Sciences Data and Information Services Center, accessed 12 March 2020, https://doi.org/10.5067/7V3N5DO04MAS.

    • Crossref
    • Export Citation
  • Jasinski, M. F., and Coauthors, 2019: NCA-LDAS: Overview and analysis of hydrologic trends for the National Climate Assessment. J. Hydrometeor., 20, 15951617, https://doi.org/10.1175/JHM-D-17-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, H. Wang, S. P. Mahanama, and A. M. DeAngelis, 2019: Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeor., 20, 12411258, https://doi.org/10.1175/JHM-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., M. Jasinski, D. Mocko, M. Rodell, J. Borak, B. Li, H. Kato Beaudoing, and C. D. Peters-Lidard, 2019: NCA-LDAS land analysis: Development and performance of a multisensor, multivariate land data assimilation system for the National Climate Assessment. J. Hydrometeor., 20, 15711593, https://doi.org/10.1175/JHM-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, https://doi.org/10.1029/2006JG000168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., P. Wu, and Z. Ma, 2020: A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol., 40, 57445766, https://doi.org/10.1002/joc.6549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, X., and Coauthors, 2020: Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv., 6, eaax0255, https://doi.org/10.1126/sciadv.aax0255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Shields, J. M. Arblaster, H. Annamalai, and R. Neale, 2020: Intraseasonal, seasonal, and interannual characteristics of regional monsoon simulations in CESM2. J. Adv. Model. Earth Syst., 12, e2019MS001962, https://doi.org/10.1029/2019MS001962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2016: Precipitation deficit flash droughts over the United States. J. Hydrometeor., 17, 11691184, https://doi.org/10.1175/JHM-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozny, M., M. Trnka, Z. Zalud, P. Hlavinka, J. Nekovar, V. Potop, and M. Virag, 2012: Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol., 107, 99111, https://doi.org/10.1007/s00704-011-0460-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining rapid onset drought development using the thermal infrared–based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2015: Using temporal changes in drought indices to generate probabilistic drought intensification forecasts. J. Hydrometeor., 16, 88105, https://doi.org/10.1175/JHM-D-14-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018: Flash droughts: A review and assessment of the challenges imposed by rapid onset droughts in the United States. Bull. Amer. Meteor. Soc., 99, 911919, https://doi.org/10.1175/BAMS-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Y. Zhong, E. D. Hunt, J. Basara, M. Svoboda, M. C. Anderson, and C. Hain, 2019: Assessing the evolution of soil moisture and vegetation conditions during a flash drought – flash recovery sequence over the south-central United States. J. Hydrometeor., 20, 549562, https://doi.org/10.1175/JHM-D-18-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2020: Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1, 1427, https://doi.org/10.1038/s43017-019-0001-x.

    • Search Google Scholar
    • Export Citation
  • Quetin, G. R., and A. L. S. Swann, 2017: Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. J. Climate, 30, 58355849, https://doi.org/10.1175/JCLI-D-16-0829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., T. W. Ford, J. K. Wang, A. Khong, E. Harris, T. Lindgren, D. W. Goldberg, and Z. Li, 2016: The North American Soil Moisture Database: Development and applications. Bull. Amer. Meteor. Soc., 97, 14411459, https://doi.org/10.1175/BAMS-D-13-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109, D01S90, https://doi.org/10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., R. Fu, R. Dickinson, J. Joiner, C. Frankenberg, L. Gu, Y. Xia, and N. Fernando, 2015: Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci., 120, 24272440, https://doi.org/10.1002/2015JG003150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., A. J. Pitman, M. G. De Kauwe, G. Abramowitz, N. Herger, J. P. Evans, and M. Decker, 2018: Evaluating CMIP5 model agreement for multiple drought metrics. J. Hydrometeor., 19, 969988, https://doi.org/10.1175/JHM-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., and Coauthors, 2016: LS3MIP (v1.0) contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project – Aims, setup and expected outcome. Geosci. Model Dev., 9, 28092832, https://doi.org/10.5194/gmd-9-2809-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehrli, K., B. P. Guillod, M. Hauser, M. Leclair, and S. I. Seneviratne, 2018: Assessing the dynamic versus thermodynamic origin of climate model biases. Geophys. Res. Lett., 45, 84718479, https://doi.org/10.1029/2018GL079220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehrli, K., B. P. Guillod, M. Hauser, M. Leclair, and S. I. Seneviratne, 2019: Identifying key driving processes of major recent heatwaves. J. Geophys. Res. Atmos., 124, 11 74611 765, https://doi.org/10.1029/2019JD030635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding: The drought phenomenon: The role of definitions. Water Int., 10, 111120, https://doi.org/10.1080/02508068508686328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., and M. S. Torn, 2015: Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling. Geophys. Res. Lett., 42, 94169424, https://doi.org/10.1002/2015GL066305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and P. A. Dirmeyer, 2020: Drought demise attribution over CONUS. J. Geophys. Res. Atmos., 125, e2019JD031255, https://doi.org/10.1029/2019JD031255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and Coauthors, 2017: Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys. Res. Lett., 44, 61736181, https://doi.org/10.1002/2017GL073285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, Y. Wu, T. Ford, and S. M. Quiring, 2015: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 19621980, https://doi.org/10.1175/JHM-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, S., and S. M. Quiring, 2017: Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrol. Earth Syst. Sci., 21, 22032218, https://doi.org/10.5194/hess-21-2203-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., L. Wang, P. Wu, P. Ji, J. Sheffield, and M. Zhang, 2019: Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun., 10, 4661, https://doi.org/10.1038/s41467-019-12692-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 677 0 0
Full Text Views 1479 475 29
PDF Downloads 1409 395 33