• Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, https://doi.org/10.1175/2007JAMC1611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awol, F. S., P. Coulibaly, and B. A. Tolson, 2018: Event-based model calibration approaches for selecting representative distributed parameters in semi-urban watersheds. Adv. Water Resour., 118, 1227, https://doi.org/10.1016/j.advwatres.2018.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, A., S. Lovelace, D. Sanger, A. F. Holland, L. Vandiver, and S. White, 2014: Exploring impacts of development and climate change on stormwater runoff. Hydrol. Processes, 28, 28442854, https://doi.org/10.1002/hyp.9840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brakensiek, D. L., and C. A. Onstad, 1977: Parameter estimation of the green and Ampt infiltration equation. Water Resour. Res., 13, 10091012, https://doi.org/10.1029/WR013i006p01009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., T. Spencer, and I. Moeller, 2007: Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom. Water Resour. Res., 43, W06402, https://doi.org/10.1029/2005WR004597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruwier, M., C. Maravat, A. Mustafa, J. Teller, M. Pirotton, S. Erpicum, P. Archambeau, and B. Dewals, 2020: Influence of urban forms on surface flow in urban pluvial flooding. J. Hydrol., 582, 124493, https://doi.org/10.1016/j.jhydrol.2019.124493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., and G. Ni, 2019: Effect of storm network simplification on flooding prediction with varying rainfall conditions. IOP Conf. Ser. Earth Environ. Sci., 344, 012093, https://doi.org/10.1088/1755-1315/344/1/012093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., H. Lyu, G. Ni, F. Tian, Y. Ma, and C. S. B. Grimmond, 2020a: Spatial scale effect of surface routing and its parameter upscaling for urban flood simulation using a grid-based model. Water Resour. Res., 56, e2019WR025468, https://doi.org/10.1029/2019WR025468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., G. Ni, Y. Qi, and B. Liu, 2020b: Does subgrid routing information matter for urban flood forecasting? A multiscenario analysis at the land parcel scale. J. Hydrometeor., 21, 20832099, https://doi.org/10.1175/JHM-D-20-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cea, L., M. Garrido, and J. Puertas, 2010: Experimental validation of two-dimensional depth-averaged models for forecasting rainfall–runoff from precipitation data in urban areas. J. Hydrol., 382, 88102, https://doi.org/10.1016/j.jhydrol.2009.12.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, T.-J., C.-H. Wang, and A. S. Chen, 2015: A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas. J. Hydrol., 524, 662679, https://doi.org/10.1016/j.jhydrol.2015.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, L., K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, 2018: Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol., 558, 275289, https://doi.org/10.1016/j.jhydrol.2018.01.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, A. S., S. Djordjević, J. Leandro, B. Evans, and D. Savić, 2008: Simulation of the building blockage effect in urban flood modelling. 11th Int. Conf. on Urban Drainage, Edinburgh, United Kingdom, IAHR/IWA, 10 pp.

  • Chen, A. S., B. Evans, S. Djordjević, and D. A. Savić, 2012: A coarse-grid approach to representing building blockage effects in 2D urban flood modelling. J. Hydrol., 426–427, 116, https://doi.org/10.1016/j.jhydrol.2012.01.007.

    • Search Google Scholar
    • Export Citation
  • Chen, W., G. Huang, and H. Zhang, 2017: Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model. Water Sci. Technol., 76, 33923403, https://doi.org/10.2166/wst.2017.504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connell, R. J., D. J. Painter, and C. Beffa, 2001: Two-dimensional flood plain flow. II: Model validation. J. Hydrol. Eng., 6, 406415, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(406).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farreny, R., T. Morales-Pinzón, A. Guisasola, C. Tayà, J. Rieradevall, and X. Gabarrell, 2011: Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res., 45, 32453254, https://doi.org/10.1016/j.watres.2011.03.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangodagamage, C., P. Belmont, and E. Foufoula-Georgiou, 2011: Revisiting scaling laws in river basins: New considerations across hillslope and fluvial regimes. Water Resour. Res., 47, W07508, https://doi.org/10.1029/2010WR009252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, W. H., and G. Ampt, 1911: Studies on soil physics. J. Agric. Sci., 4, 124, https://doi.org/10.1017/S0021859600001441.

  • Huang, C.-J., M.-H. Hsu, A. S. Chen, and C.-H. Chiu, 2014: Simulating the storage and the blockage effects of buildings in urban flood modeling. Atmos. Oceanic Sci., 25, 591, https://doi.org/10.3319/TAO.2014.02.11.01(Hy).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, W., Z. Li, K. Zhang, J. Wang, and C. Yao, 2020: GA-PIC: An improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins. J. Hydrol., 586, 124900, https://doi.org/10.1016/j.jhydrol.2020.124900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isidoro, J. M. G. P., J. L. M. P. de Lima, and J. Leandro, 2012: Influence of wind-driven rain on the rainfall-runoff process for urban areas: Scale model of high-rise buildings. Urban Water J., 9, 199210, https://doi.org/10.1080/1573062X.2012.654801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, X., Z. Li, and Z. Liu, 2019: Flood prediction in ungauged basins by physical-based TOPKAPI model. Adv. Meteor., 2019, 4795853, https://doi.org/10.1155/2019/4795853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krebs, G., T. Kokkonen, M. Valtanen, H. Koivusalo, and H. Setälä, 2013: A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water J., 10, 394410, https://doi.org/10.1080/1573062X.2012.739631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leandro, J., A. Schumann, and A. Pfister, 2016: A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. J. Hydrol., 535, 356365, https://doi.org/10.1016/j.jhydrol.2016.01.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. G., and J. P. Heaney, 2003: Estimation of urban imperviousness and its impacts on storm water systems. J. Water Resour. Plann. Manage., 129, 419426, https://doi.org/10.1061/(ASCE)0733-9496(2003)129:5(419).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., H. Nakagawa, K. Kawaike, and H. Zhang, 2016: Urban inundation simulation considering road network and building configurations. J. Flood Risk Manag., 9, 224233, https://doi.org/10.1111/jfr3.12165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., C. Peng, P.-C. Chiang, Y. Cai, X. Wang, and Z. Yang, 2019: Mechanisms and applications of green infrastructure practices for stormwater control: A review. J. Hydrol., 568, 626637, https://doi.org/10.1016/j.jhydrol.2018.10.074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, T. C., and C. Welty, 2017: Effects of spatial configuration of imperviousness and green infrastructure networks on hydrologic response in a residential sewershed. Water Resour. Res., 53, 80848104, https://doi.org/10.1002/2017WR020631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., K. Zhang, Z. Li, Z. Liu, J. Wang, and P. Huang, 2020: A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J. Hydrol., 590, 125440, https://doi.org/10.1016/j.jhydrol.2020.125440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, H., G. Ni, X. Cao, Y. Ma, and F. Tian, 2018: Effect of temporal resolution of rainfall on simulation of urban flood processes. Water, 10, 880, https://doi.org/10.3390/w10070880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mateo, C. M. R., D. Yamazaki, H. Kim, A. Champathong, J. Vaze, and T. Oki, 2017: Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods. Hydrol. Earth Syst. Sci., 21, 51435163, https://doi.org/10.5194/hess-21-5143-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillan, H., and J. Brasington, 2007: Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology, 90, 226243, https://doi.org/10.1016/j.geomorph.2006.10.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, C., J. Liu, H. Wang, Z. Yang, X. Ding, and W. Shao, 2018: Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ., 639, 13941407, https://doi.org/10.1016/j.scitotenv.2018.05.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montz, B. E., and E. Gruntfest, 2002: Flash flood mitigation: Recommendations for research and applications. Global Environ. Change, 4, 1522, https://doi.org/10.1016/S1464-2867(02)00011-6.

    • Search Google Scholar
    • Export Citation
  • Palla, A., and I. Gnecco, 2015: Hydrologic modeling of low impact development systems at the urban catchment scale. J. Hydrol., 528, 361368, https://doi.org/10.1016/j.jhydrol.2015.06.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passalacqua, P., P. Tarolli, and E. Foufoulageorgiou, 2010: Testing space-scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape. Water Resour. Res., 46, W11535, https://doi.org/10.1029/2009WR008812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiang, W., Z. Xiaoxin, W. Mingjie, Z. Yuwen, L. Ping, and B. Guoying, 2011: Research summary of planning and design standards for storm water system in Beijing City. Water Wastewater Eng., 37 (10), 3439.

    • Search Google Scholar
    • Export Citation
  • Qin, H. P., Z. X. Li, and G. Fu, 2013: The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manage., 129, 577585, https://doi.org/10.1016/j.jenvman.2013.08.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossman, L. A., 2010: Storm water management model user’s manual, version 5.0. Tech. Rep. EPA/600/R-05/040, 295 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100ERK4.txt.

  • Rossman, L. A., and W. Huber, 2015: Storm water management model reference manual: Volume I–Hydrology (Revised). Tech. Rep. EPA/600/R-15/162A, 231 pp., https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NYRA.txt.

  • Rossman, L. A., and W. Huber, 2017: Storm water management model reference manual: Volume II – Hydraulics. Tech. Rep. EPA/600/R-17/111, 190 pp., https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100S9AS.pdf.

  • Russo, B., D. Suñer, M. Velasco, and S. Djordjević, 2012: Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model. Proc. Ninth Int. Conf. on Urban Drainage Modelling, Belgrade, Serbia, University of Belgrade.

  • Salman, A. M., and Y. Li, 2018: Flood risk assessment, future trend modeling, and risk communication: A review of ongoing research. Nat. Hazards Rev., 19, 04018011, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, N., M. Hall, B. Hong, and L. Zhang, 2014: Impact of SWMM catchment discretization: Case study in Syracuse, New York. J. Hydrol. Eng., 19, 223234, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vojinovic, Z., S. D. Seyoum, J. M. Mwalwaka, and R. K. Price, 2011: Effects of model schematisation, geometry and parameter values on urban flood modelling. Water Sci. Technol., 63, 462467, https://doi.org/10.2166/wst.2011.244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voter, C., and S. Loheide, 2018: Urban residential surface and subsurface hydrology: Synergistic effects of low-impact features at the parcel scale. Water Resour. Res., 54, 82168233, https://doi.org/10.1029/2018WR022534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, O. E. J., P. D. Bates, C. C. Sampson, A. M. Smith, K. A. Johnson, and T. A. Erickson, 2017: Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resour. Res., 53, 79687986, https://doi.org/10.1002/2017WR020917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, O. E. J., P. D. Bates, A. M. Smith, C. C. Sampson, K. A. Johnson, J. Fargione, and P. Morefield, 2018: Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett., 13, 034023, https://doi.org/10.1088/1748-9326/aaac65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woznicki, S. A., K. L. Hondula, and S. T. Jarnagin, 2018: Effectiveness of landscape-based green infrastructure for stormwater management in suburban catchments. Hydrol. Processes, 32, 23462361, https://doi.org/10.1002/hyp.13144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. A. Smith, D. B. Wright, M. L. Baeck, G. Villarini, F. Tian, and H. Hu, 2013: Urbanization and climate change: An examination of nonstationarities in urban flooding. J. Hydrometeor., 14, 17911809, https://doi.org/10.1175/JHM-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and T. L. Ng, 2017: Gauging through the crowd: A crowd-sourcing approach to urban rainfall measurement and storm water modeling implications. Water Resour. Res., 53, 94629478, https://doi.org/10.1002/2017WR020682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, L., W. Wei, and L. Chen, 2016: How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecol. Indic., 60, 893905, https://doi.org/10.1016/j.ecolind.2015.08.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., D. Yu, Z. Yin, M. Liu, and Q. He, 2016: Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the City Center of Shanghai, China. J. Hydrol., 537, 138145, https://doi.org/10.1016/j.jhydrol.2016.03.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., H. Liu, J. Wu, Y. Hu, and L. Zhang, 2010: Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landscape Urban Plann., 98, 210219, https://doi.org/10.1016/j.landurbplan.2010.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zoran, V., 2009: Supporting flood disaster management with numerical modelling and spatial mapping tools. Int. J. Geoinf., 5, 3340.

  • Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: Urbanization exacerbated the rainfall and flooding caused by Hurricane Harvey in Houston. Nature, 563, 384388, https://doi.org/10.1038/s41586-018-0676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., and Coauthors, 2019a: Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China. Water Sci. Eng., 12, 8597, https://doi.org/10.1016/j.wse.2019.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., Q. Wang, L. Chao, J. Ye, Z. Li, Z. Yu, and Q. Ju, 2019b: Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. J. Hydrol., 574, 903914, https://doi.org/10.1016/j.jhydrol.2019.04.087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., Q. Wang, L. Chao, J. Ye, Z. Li, Z. Yu, and Q. Ju, 2019c: Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. J. Hydrol., 574, 903914, https://doi.org/10.1016/j.jhydrol.2019.04.087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., G. B. Ruben, X. Li, Z. Li, Z. Yu, J. Xia, and Z. Dong, 2020: A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin. Environ. Modell. Software, 128, 104704, https://doi.org/10.1016/j.envsoft.2020.104704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Q., W. Yu, A. S. Chen, C. Jiang, and G. Fu, 2016: Experimental assessment of building blockage effects in a simplified urban district. Procedia Eng., 154, 844852, https://doi.org/10.1016/j.proeng.2016.07.448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Q., G. Leng, J. Su, and Y. Ren, 2018: Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ., 658, 2433, https://doi.org/10.1016/j.scitotenv.2018.12.184.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 39 39 39
Full Text Views 3 3 3
PDF Downloads 5 5 5

Significant Impacts of Rainfall Redistribution through the Roof of Buildings on Urban Hydrology

View More View Less
  • 1 State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
  • 2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • 3 University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Microtopography on a building roof will direct rainfall from roofs to the ground through downspouts and transform the rainfall spatial distribution from plane to points. However, the issues on whether and how the building-induced rainfall redistribution (BIRR) influences hydrologic responses are still not well understood despite the numerous downspouts in the urban area. Hence, this study brings the roof layer into a grid-based urban hydrologic model (gUHM) to quantitatively evaluate the impacts of BIRR, aiming to enhance the understanding of building effects in urban hydrology and subsequently to identify the necessity of incorporating BIRR into flood forecasting. Nine land development strategies and 27 rainfall conditions are considered herein to characterize the changing circumstance. Results indicate that the impacts of BIRR depend on multiple circumstance factors and are nonnegligible in urban hydrology. The BIRR causes not only bidirectional impacts on the hydrologic characteristic values (e.g., peak flow and runoff volume) but also an obvious alteration of the hydrograph. Overall, the BIRR tends to increase the peak flow, and more importantly, the impact will be aggravated by the increase of rainfall intensity with the maximum relative error of peak flow approaching 10%. This study contributes to a better understanding of building effects on urban hydrology and a step forward to reduce the uncertainty in urban flood warnings.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youcun Qi, youcun.qi@igsnrr.ac.cn

Abstract

Microtopography on a building roof will direct rainfall from roofs to the ground through downspouts and transform the rainfall spatial distribution from plane to points. However, the issues on whether and how the building-induced rainfall redistribution (BIRR) influences hydrologic responses are still not well understood despite the numerous downspouts in the urban area. Hence, this study brings the roof layer into a grid-based urban hydrologic model (gUHM) to quantitatively evaluate the impacts of BIRR, aiming to enhance the understanding of building effects in urban hydrology and subsequently to identify the necessity of incorporating BIRR into flood forecasting. Nine land development strategies and 27 rainfall conditions are considered herein to characterize the changing circumstance. Results indicate that the impacts of BIRR depend on multiple circumstance factors and are nonnegligible in urban hydrology. The BIRR causes not only bidirectional impacts on the hydrologic characteristic values (e.g., peak flow and runoff volume) but also an obvious alteration of the hydrograph. Overall, the BIRR tends to increase the peak flow, and more importantly, the impact will be aggravated by the increase of rainfall intensity with the maximum relative error of peak flow approaching 10%. This study contributes to a better understanding of building effects on urban hydrology and a step forward to reduce the uncertainty in urban flood warnings.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youcun Qi, youcun.qi@igsnrr.ac.cn
Save