• Ahmadalipour, A., H. Moradkhani, H. Yan, and M. Zarekarizi, 2017: Remote sensing of drought: Vegetation, soil moisture, and data assimilation. Remote Sensing of Hydrological Extremes, V. Lakshmi, Ed., Springer, 121–149, https://doi.org/10.1007/978-3-319-43744-6_7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albergel, C., and et al. , 2017: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-monde assessment over the Euro-Mediterranean area. Geosci. Model Dev., 10, 38893912, https://doi.org/10.5194/gmd-10-3889-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res., 112, D11112, https://doi.org/10.1029/2006JD007507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Climate, 24, 20252044, https://doi.org/10.1175/2010JCLI3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbu, A. L., J.-C. Calvet, J.-F. Mahfouf, C. Albergel, and S. Lafont, 2011: Assimilation of soil wetness index and leaf area index into the ISBA-A-gs land surface model: Grassland case study. Biogeosciences, 8, 19711986, https://doi.org/10.5194/bg-8-1971-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbu, A. L., J.-C. Calvet, J.-F. Mahfouf, and S. Lafont, 2014: Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: A land data assimilation application over France. Hydrol. Earth Syst. Sci., 18, 173192, https://doi.org/10.5194/hess-18-173-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. I. Christian, R. A. Wakefield, J. A. Otkin, E. D. Hunt, and D. P. Brown, 2019: The evolution, propagation, and spread of flash drought in the central United States during 2012. Environ. Res. Lett., 14, 084025, https://doi.org/10.1088/1748-9326/ab2cc0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolten, J. D., and W. T. Crow, 2012: Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture. Geophys. Res. Lett., 39, L19406, https://doi.org/10.1029/2012GL053470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, B., C. Albergel, Y. Zheng, A. L. Barbu, D. Fairbairn, S. Munier, and J.-C. Calvet, 2020: An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the land data assimilation system LDAS-Monde: Application over the Euro-Mediterranean region. Hydrol. Earth Syst. Sci., 24, 325347, https://doi.org/10.5194/hess-24-325-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. F., B. D. Wardlow, T. Tadesse, M. J. Hayes, and B. C. Reed, 2008: The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIsci. Remote Sens., 45, 1646, https://doi.org/10.2747/1548-1603.45.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., S.-X. Zhou, B. E. Medlyn, A. J. Pitman, Y.-P. Wang, R. A. Duursma, and I. C. Prentice, 2015: Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences, 12, 75037518, https://doi.org/10.5194/bg-12-7503-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dente, L., G. Satalino, F. Mattia, and F. Rinaldi, 2008: Assimilation of Leaf Area Index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens. Environ., 112, 13951407, https://doi.org/10.1016/j.rse.2007.05.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., P. van Oevelen, W. Wagner, S. Mecklenburg, A. Robock, and T. Jackson, 2011: A new international network for soil moisture data. Eos, Trans. Amer. Geophys. Union, 92, 141142, https://doi.org/10.1029/2011EO170001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and et al. , 2011: North American Land Data Assimilation System Phase 2 (NLDAS-2): Development and applications. GEWEX News, Vol. 21, No. 2, International GEWEX Project Office, Silver Spring, MD, 6–7, https://www.gewex.org/gewex-content/files_mf/1432209506May2011.pdf.

  • Feng, X., D. D. Ackerly, T. E. Dawson, S. Manzoni, R. P. Skelton, G. Vico, and S. E. Thompson, 2018: The ecohydrological context of drought and classification of plant responses. Ecol. Lett., 21, 17231736, https://doi.org/10.1111/ele.13139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, A. M., and et al. , 2018: Evaluation of a data assimilation system for land surface models using CLM4.5. J. Adv. Model. Earth Syst., 10, 24712494, https://doi.org/10.1029/2018MS001362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayler, S., and et al. , 2014: Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites. Water Resour. Res., 50, 13371356, https://doi.org/10.1002/2013WR014634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and R. Sohlberg, 2000: Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, https://doi.org/10.1080/014311600210209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., A. AghaKouchak, N. Nakhjiri, and A. Farahmand, 2014: Global integrated drought monitoring and prediction system. Sci. Data, 1, 140001, https://doi.org/10.1038/sdata.2014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik, 2012: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., N. N. Das, J. W. Hansen, and E. G. Njoku, 2013: Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ., 138, 149164, https://doi.org/10.1016/j.rse.2013.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasinski, M. F., and et al. , 2019: NCA-LDAS: Overview and analysis of hydrologic trends for the National Climate Assessment. J. Hydrometeor., 20, 15951617, https://doi.org/10.1175/JHM-D-17-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, X., L. Kumar, Z. Li, H. Feng, X. Xu, G. Yang, and J. Wang, 2018: A review of data assimilation of remote sensing and crop models. Eur. J. Agron., 92, 141152, https://doi.org/10.1016/j.eja.2017.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2006: Land Information System: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. Santanello, K. Harrison, Y. Liu, and M. Shaw, 2012: Land surface Verification Toolkit (LVT) - A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869886, https://doi.org/10.5194/gmd-5-869-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski, 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 44634478, https://doi.org/10.5194/hess-19-4463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2016: Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System. J. Hydrometeor., 17, 19511972, https://doi.org/10.1175/JHM-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., M. J. Jasinski, D. M. Mocko, M. Rodell, J. Borak, B. Li, H. Kato Beaudoing, and C. D. Peters-Lidard, 2019a: NCA-LDAS land analysis: Development and performance of a multisensor, multivariate land data assimilation system for the National Climate Assessment. J. Hydrometeor., 20, 15711593, https://doi.org/10.1175/JHM-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., D. M. Mocko, S. Wang, and C. D. Peters-Lidard, 2019b: Assimilation of remotely sensed leaf area index into the Noah-MP land surface model: Impacts on water and carbon fluxes and states over the continental United States. J. Hydrometeor., 20, 13591377, https://doi.org/10.1175/JHM-D-18-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., T. R. Holmes, R. Bindlish, R. de Jeu, and C. D. Peters-Lidard, 2020: Assimilation of vegetation optical depth retrievals from passive microwave radiometry. Hydrol. Earth Syst. Sci., 24, 34313450, https://doi.org/10.5194/hess-24-3431-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, X.-L., C.-B. Fu, Z.-L. Yang, and W.-D. Guo, 2019: Comparison of different sequential assimilation algorithms for satellite-derived leaf area index using the Data Assimilation Research Testbed (version Lanai). Geosci. Model Dev., 12, 31193133, https://doi.org/10.5194/gmd-12-3119-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, R., J. Wen, X. Wang, Z. Wang, Z. Li, Y. Xie, L. Zhu, and D. Li, 2019: Derivation of vegetation optical depth and water content in the source region of the Yellow River using the FY-3B microwave data. Remote Sens., 11, 1536, https://doi.org/10.3390/rs11131536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, N., G.-Y. Niu, Y. Xia, X. Cai, Y. Zhang, Y. Ma, and Y. Fang, 2017: A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res. Atmos., 122, 12 24512 268, https://doi.org/10.1002/2017JD027597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., L. N. Long, Y. Xia, S. K. Yang, J. E. Schemm, and M. Ek, 2011: Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS. J. Hydrometeor., 12, 181205, https://doi.org/10.1175/2010JHM1310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NDMC, 2017: Quick drought response index: A short-term dryness indicator. National Drought Mitigation Center Publ. 9, 3 pp., https://digitalcommons.unl.edu/ndmcpub/9/.

  • Niu, G.-Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Y.-H. Fang, L.-L. Chang, J. Jin, H. Yuan, and X. Zeng, 2020: Enhancing the Noah-MP’s ecosystem response to droughts with an explicit representation of plant water storage supplied by dynamic root water uptake. J. Adv. Model. Earth Syst., 12, e2020MS002062, https://doi.org/10.1029/2020MS002062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining rapid onset drought development using the thermal infrared–based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and et al. , 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, https://doi.org/10.1016/j.agrformet.2015.12.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, https://doi.org/10.1175/2009JHM1116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and et al. , 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poltoradnev, M., J. Ingwersen, K. Imukova, P. Högy, H. Wizemann, and T. Streck, 2018: How well does Noah-MP simulate the regional mean and spatial variability of topsoil water content in two agricultural landscapes in southwest Germany? J. Hydrometeor., 19, 555573, https://doi.org/10.1175/JHM-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., C. Rüdiger, J.-C. Calvet, N. Fritz, L. Jarlan, and Y. Kerr, 2008: Joint assimilation of surface soil moisture and LAI observations into a land surface model. Agric. For. Meteor., 148, 13621373, https://doi.org/10.1016/j.agrformet.2008.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawada, Y., T. Koike, E. Ikoma, and M. Kitsuregawa, 2020: Monitoring and predicting agricultural droughts for a water-limited subcontinental region by integrating a land surface model and microwave remote sensing. IEEE Trans. Geosci. Remote Sens., 58, 1433, https://doi.org/10.1109/TGRS.2019.2927342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Y. Xia, L. Luo, E. F. Wood, M. Ek, and K. E. Mitchell, 2012: North American Land Data Assimilation System: A framework for merging model and satellite data for improved drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches, B. Wardlow, M. C. Anderson, and J. P. Verdin, Eds., CRC Press, 484 pp., https://doi.org/10.1201/b11863.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2014: A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., 95, 861882, https://doi.org/10.1175/BAMS-D-12-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and et al. , 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, S., A. I. J. M. Van Dijk, P. Tregoning, and L. J. Renzullo, 2019: Forecasting dryland vegetation condition months in advance through satellite data assimilation. Nat. Commun., 10, 469, https://doi.org/10.1038/s41467-019-08403-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., M. G. De Kauwe, A. J. Pitman, M. J. Best, G. Abramowitz, V. Haverd, M. Decker, and N. Haughton, 2016: Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett., 11, 104012, https://doi.org/10.1088/1748-9326/11/10/104012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project Phase 2 (NLDAS-2), 1: Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, D. M. Mocko, C. D. Peters-Lidard, J. Sheffield, J. Dong, and E. F. Wood, 2014: Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble. J. Hydrometeor., 15, 16361650, https://doi.org/10.1175/JHM-D-13-058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. Wang, Y. Xiang, X. Zhao, and J. Song, 2016: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens., 54, 53015318, https://doi.org/10.1109/TGRS.2016.2560522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., and H. Moradkhani, 2016: Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling. Adv. Water Resour., 94, 364378, https://doi.org/10.1016/j.advwatres.2016.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 626 626 61
Full Text Views 131 131 19
PDF Downloads 182 182 18

Assimilation of Vegetation Conditions Improves the Representation of Drought over Agricultural Areas

View More View Less
  • 1 Science Applications International Corporation, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland
  • | 3 Earth Sciences Division, NASA GSFC, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study presents an evaluation of the impact of vegetation conditions on a land surface model (LSM) simulation of agricultural drought. The Noah-MP LSM is used to simulate water and energy fluxes and states, which are transformed into drought categories using percentiles over the continental United States from 1979 to 2017. Leaf area index (LAI) observations are assimilated into the dynamic vegetation scheme of Noah-MP. A weekly operational drought monitor (the U.S. Drought Monitor) is used for the evaluation. The results show that LAI assimilation into Noah-MP’s dynamic vegetation scheme improves the model’s ability to represent drought, particularly over cropland areas. LAI assimilation improves the simulation of the drought category, detection of drought conditions, and reduces the instances of drought false alarms. The assimilation of LAI in these locations not only corrects model errors in the simulation of vegetation, but also can help to represent unmodeled physical processes such as irrigation toward improved simulation of agricultural drought.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Mocko, david.mocko@nasa.gov

This article is included in the Progress in Advancing Drought Monitoring and Prediction Special Collection.

Abstract

This study presents an evaluation of the impact of vegetation conditions on a land surface model (LSM) simulation of agricultural drought. The Noah-MP LSM is used to simulate water and energy fluxes and states, which are transformed into drought categories using percentiles over the continental United States from 1979 to 2017. Leaf area index (LAI) observations are assimilated into the dynamic vegetation scheme of Noah-MP. A weekly operational drought monitor (the U.S. Drought Monitor) is used for the evaluation. The results show that LAI assimilation into Noah-MP’s dynamic vegetation scheme improves the model’s ability to represent drought, particularly over cropland areas. LAI assimilation improves the simulation of the drought category, detection of drought conditions, and reduces the instances of drought false alarms. The assimilation of LAI in these locations not only corrects model errors in the simulation of vegetation, but also can help to represent unmodeled physical processes such as irrigation toward improved simulation of agricultural drought.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Mocko, david.mocko@nasa.gov

This article is included in the Progress in Advancing Drought Monitoring and Prediction Special Collection.

Save