• Avolio, E., and S. Federico, 2018: WRF simulations for a heavy rainfall event in southern Italy: Verification and sensitivity tests. Atmos. Res., 209, 1435, https://doi.org/10.1016/j.atmosres.2018.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berckmans, J., O. Giot, R. De Troch, R. Hamdi, R. Ceulemans, and P. Termonia, 2017: Reinitialized versus continuous regional climate simulations using ALARO-0 coupled to the land surface model SURFEXv5. Geosci. Model Dev., 10, 223238, https://doi.org/10.5194/gmd-10-223-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., E. J. Kendon, S. C. Chan, N. Ban, D. Leutwyler, C. Schär, and G. Fosser, 2018: Pan-European climate at convection-permitting scale: A model intercomparison study. Climate Dyn., 55, 3559, https://doi.org/10.1007/S00382-018-4114-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, E., M. Demuzere, and N. Van Lipzig, 2016: Modelling strategies for performing convection-permitting climate simulations. Meteor. Z., 25, 149163, https://doi.org/10.1127/metz/2015/0598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camera, C., A. Bruggeman, P. Hadjinicolaou, S. Pashiardis, and M. A. Lange, 2014: Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980–2010. J. Geophys. Res. Atmos., 119, 693712, https://doi.org/10.1002/2013JD020611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camera, C., A. Bruggeman, G. Zittis, I. Sofokleous, and J. Arnault, 2020: Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way coupled atmospheric-hydrologic modelling system. Nat. Hazards Earth Syst. Sci., 20, 27912810, https://doi.org/10.5194/nhess-2020-43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassola, F., F. Ferrari, and A. Mazzino, 2015: Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmos. Res., 164–165, 210225, https://doi.org/10.1016/j.atmosres.2015.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centella-Artola, A., M. A. Taylor, A. Bezanilla-Morlot, D. Martinez-Castro, J. D. Campbell, T. S. Stephenson, and A. Vichot, 2015: Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model. Climate Dyn., 44, 19011918, https://doi.org/10.1007/s00382-014-2272-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, N. M. Roberts, and C. A. Ferro, 2014: The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J. Climate, 27, 61556174 , https://doi.org/10.1175/JCLI-D-13-00723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin, J., M. Déqué, R. Radu, and S. Somot, 2010: Sensitivity study of heavy precipitation in limited area model climate simulations: Influence of the size of the domain and the use of the spectral nudging technique. Tellus, 62A, 591604, https://doi.org/10.1111/j.1600-0870.2010.00467.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman & Hall, 456 pp.

    • Crossref
    • Export Citation
  • Gilbert, G. K., 1884: Finley’s tornado predictions. Amer. Meteor. J., 1, 166172.

  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and W. J. Gutowski Jr., 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467490, https://doi.org/10.1146/annurev-environ-102014-021217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo, 1998: Towards improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resour. Res., 34, 751763, https://doi.org/10.1029/97WR03495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, and P. Pegion, 2012: On the increased frequency of Mediterranean drought. J. Climate, 25, 21462161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and I. B. Mason, 2012: Deterministic forecasts of binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jollife and D. B. Stephenson, Eds., John Wiley & Sons, 31–59.

    • Crossref
    • Export Citation
  • Hogan, R. J., C. Ferro, I. Jolliffe, and D. Stephenson, 2010: Equitability revisited: Why the “equitable threat score” is not equitable. Wea. Forecasting, 25, 710726, https://doi.org/10.1175/2009WAF2222350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 34, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, https://doi.org/10.1155/2010/707253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X. M., M. Xue, R. A. McPherson, E. Martin, D. H. Rosendahl, and L. Qiao, 2018: Precipitation dynamical downscaling over the Great Plains. J. Adv. Model. Earth Syst., 10, 421447, https://doi.org/10.1002/2017MS001154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeworrek, J., G. West, and R. Stull, 2019: Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Wea. Forecasting, 34, 10971115, https://doi.org/10.1175/WAF-D-18-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, F., M. Ekström, J. P. Evans, and J. Teng, 2014: Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor. Appl. Climatol., 115, 297304, https://doi.org/10.1007/s00704-013-0904-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katragkou, E., and et al. , 2015: Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model Dev., 8, 603618, https://doi.org/10.5194/gmd-8-603-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kioutsioukis, I., A. de Meij, H. Jakobs, E. Katragkou, J. F. Vinuesa, and A. Kazantzidis, 2016: High resolution WRF ensemble forecasting for irrigation: Multi-variable evaluation. Atmos. Res., 167, 156174, https://doi.org/10.1016/j.atmosres.2015.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leduc, M., and R. Laprise, 2009: Regional climate model sensitivity to domain size. Climate Dyn., 32, 833854, https://doi.org/10.1007/s00382-008-0400-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K. S., and S. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, J. C. F., Z. L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, https://doi.org/10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., F. Boberg, J. H. Christensen, and P. Berg, 2013: Dynamical downscaling with reinitializations: A method to generate finescale climate datasets suitable for impact studies. J. Hydrometeor., 14, 11591174, https://doi.org/10.1175/JHM-D-12-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Cloug, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohan, P. R., C. V. Srinivas, V. Yesubabu, R. Baskaran, and B. Venkatraman, 2018: Simulation of a heavy rainfall event over Chennai in Southeast India using WRF: Sensitivity to microphysics parameterization. Atmos. Res., 210, 8399, https://doi.org/10.1016/j.atmosres.2018.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1991: Forecast verification: Its complexity and dimensionality. Mon. Wea. Rev., 119, 15901601, https://doi.org/10.1175/1520-0493(1991)119<1590:FVICAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirce, C. S., 1884: The numerical measure of the success of predictions. Science, 4, 453454, https://doi.org/10.1126/science.ns-4.93.453-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piazza, M., A. E. Prein, H. Truhetz, and A. Csaki, 2019: On the sensitivity of precipitation in convection-permitting climate simulations in the Eastern Alpine region. Meteor. Z., 28, 323346, https://doi.org/10.1127/metz/2019/0941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politi, N., P. T. Nastos, A. Sfetsos, D. Vlachogiannis, and N. R. Dalezios, 2018: Evaluation of the AWR-WRF model configuration at high resolution over the domain of Greece. Atmos. Res., 208, 229245, https://doi.org/10.1016/j.atmosres.2017.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and et al. , 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and et al. , 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, https://doi.org/10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J., A. Seth, and S. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev., 131, 28572874, https://doi.org/10.1175/1520-0493(2003)131<2857:RVCSFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. Accessed 09 March 2020, https://www.emc.ncep.noaa.gov/mmb/mmbpll/mesoimpl/eta12tpb/.

  • Rojas, M., and A. Seth, 2003: Simulation and sensitivity in a nested modeling system for South America. Part II: GCM boundary forcing. J. Climate, 16, 24542471, https://doi.org/10.1175/1520-0442(2003)016<2454:SASIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., and F. Giorgi, 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 26982712, https://doi.org/10.1175/1520-0442(1998)011<2698:TEODCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., M. Rojas, B. Liebmann, and J. H. Qian, 2004: Daily rainfall analysis for South America from a regional climate model and station observations. Geophys. Res. Lett., 31, L07213, https://doi.org/10.1029/2003GL019220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Song, I. S., U. Y. Byun, J. Hong, and S. H. Park, 2018: Domain-size and top-height dependence in regional predictions for the Northeast Asia in spring. Atmos. Sci. Lett., 19, e799, https://doi.org/10.1002/asl.799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., 2000: Use of the “odds ratio” for diagnosing forecast skill. Wea. Forecasting, 15, 221232, https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., B. Casati, C. A. T. Ferro, and C. A. Wilson, 2008: The extreme dependency score: A non-vanishing measure for forecasts of rare events. Meteor. Appl., 15, 4150, https://doi.org/10.1002/met.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and et al. , 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14A.2, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Tymvios, F., D. Charalambous, S. Michaelides, and J. Lelieveld, 2018: Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF-ARW model. Atmos. Res., 208, 4559, https://doi.org/10.1016/j.atmosres.2017.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and F. Chomé, 2005: One-way nested regional climate simulations and domain size. J. Climate, 18, 229233, https://doi.org/10.1175/JCLI3252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 27612779, https://doi.org/10.1175/MWR2826.1.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Young, A. R., 2006: Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model. J. Hydrol., 320, 155172, https://doi.org/10.1016/j.jhydrol.2005.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., P. Hadjinicolaou, and J. Lelieveld, 2014: Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. Amer. J. Climate Change, 3, 490511, https://doi.org/10.4236/ajcc.2014.35042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittis, G., A. Bruggeman, C. Camera, P. Hadjinicolaou, and J. Lelieveld, 2017: The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmos. Res., 191, 2033, https://doi.org/10.1016/j.atmosres.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 108 108 27
Full Text Views 28 28 5
PDF Downloads 37 37 4

Comprehensive Methodology for the Evaluation of High-Resolution WRF Multiphysics Precipitation Simulations for Small, Topographically Complex Domains

View More View Less
  • 1 Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
  • | 2 Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
  • | 3 Dipartimento di Scienze della Terra “A. Desio,” Università degli Studi di Milano, Milan, Italy
© Get Permissions
Restricted access

ABSTRACT

A stepwise evaluation method and a comprehensive scoring approach are proposed and implemented to select a model setup and physics parameterizations of the Weather Research and Forecasting (WRF) Model for high-resolution precipitation simulations. The ERA5 reanalysis data were dynamically downscaled to 1-km resolution for the topographically complex domain of the eastern Mediterranean island of Cyprus. The performance of the simulations was examined for three domain configurations, two model initialization approaches and 18 combinations of atmospheric physics parameterizations. Two continuous and two categorical scores were used for the evaluation. A new extreme event score, which combines hits and frequency bias, was introduced as a complementary evaluator of extremes. A composite scaled score was used to identify the overall best performing parameterizations. The least errors in mean daily and monthly precipitation amounts and daily extremes were found for the domain configuration with the largest extent and three nested domains. A 5-day initialization frequency did not improve precipitation, relative to 30-day continuous simulations. The parameterization type with the largest impact on precipitation was microphysics. The cumulus parameterization was also found to have an impact on the 1-km nested domain, despite that it was only activated in the coarser “parent” domains. Comparison of simulations with 12-, 4-, and 1-km resolution revealed the better skill of the model at 1 km. The impact of the various model configurations in the small-sized domain was different from the impact in larger model domains; this could be further explored for other atmospheric variables.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0110.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ioannis Sofokleous, i.sofokleous@cyi.ac.cy

ABSTRACT

A stepwise evaluation method and a comprehensive scoring approach are proposed and implemented to select a model setup and physics parameterizations of the Weather Research and Forecasting (WRF) Model for high-resolution precipitation simulations. The ERA5 reanalysis data were dynamically downscaled to 1-km resolution for the topographically complex domain of the eastern Mediterranean island of Cyprus. The performance of the simulations was examined for three domain configurations, two model initialization approaches and 18 combinations of atmospheric physics parameterizations. Two continuous and two categorical scores were used for the evaluation. A new extreme event score, which combines hits and frequency bias, was introduced as a complementary evaluator of extremes. A composite scaled score was used to identify the overall best performing parameterizations. The least errors in mean daily and monthly precipitation amounts and daily extremes were found for the domain configuration with the largest extent and three nested domains. A 5-day initialization frequency did not improve precipitation, relative to 30-day continuous simulations. The parameterization type with the largest impact on precipitation was microphysics. The cumulus parameterization was also found to have an impact on the 1-km nested domain, despite that it was only activated in the coarser “parent” domains. Comparison of simulations with 12-, 4-, and 1-km resolution revealed the better skill of the model at 1 km. The impact of the various model configurations in the small-sized domain was different from the impact in larger model domains; this could be further explored for other atmospheric variables.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0110.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ioannis Sofokleous, i.sofokleous@cyi.ac.cy

Supplementary Materials

    • Supplemental Materials (PDF 1.13 MB)
Save