The Impact of Noah-MP Physical Parameterizations on Modeling Water Availability during Droughts in the Texas–Gulf Region

Wen-Ying Wu aDepartment of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Wen-Ying Wu in
Current site
Google Scholar
PubMed
Close
,
Zong-Liang Yang aDepartment of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Zong-Liang Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3030-0330
, and
Michael Barlage bResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Michael Barlage in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Texas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multiparameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0189.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zong-Liang Yang, liang@jsg.utexas.edu

This article is included in the Progress in Advancing Drought Monitoring and Prediction Special Collection.

Abstract

Texas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multiparameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0189.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zong-Liang Yang, liang@jsg.utexas.edu

This article is included in the Progress in Advancing Drought Monitoring and Prediction Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 1.29 MB)
Save
  • Anderson, M. C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 10351056, https://doi.org/10.1175/JHM-D-12-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, K. R., G. S. Nearing, S. Wang, S. Yatheendradas, and C. D. Peters-Lidard, 2018: Parameter sensitivity of the Noah-MP land surface model with dynamic vegetation. J. Hydrometeor., 19, 815830, https://doi.org/10.1175/jhm-d-17-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.-L. Yang, and G.-Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, https://doi.org/10.1007/s10584-014-1308-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brakebill, J., D. Wolock, and S. Terziotti, 2011: Digital hydrologic networks supporting applications related to spatially referenced regression modeling. J. Amer. Water Resour. Assoc., 47, 916932, https://doi.org/10.1111/j.1752-1688.2011.00578.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., and Coauthors, 2016: Implementing and evaluating variable soil thickness in the Community Land Model, version 4.5 (CLM4.5). J. Climate, 29, 34413461, https://doi.org/10.1175/JCLI-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., J. Wahr, and R. S. Nerem, 2004: Preliminary observations of global ocean mass variations with GRACE. Geophys. Res. Lett., 31, L13310 , https://doi.org/10.1029/2004GL020461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., J. Mai, L. Samaniego, M. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 28232836, https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811398, https://doi.org/10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., 2015: Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res., 51, 30523069, https://doi.org/10.1002/2015WR017037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., G. Miguez-Macho, E. G. Jobbágy, R. B. Jackson, and C. Otero-Casal, 2017: Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA, 114, 10 57210 577, https://doi.org/10.1073/pnas.1712381114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, D. N., and Coauthors, 2016: What caused the spring intensification and winter demise of the 2011 drought over Texas? Climate Dyn., 47, 30773090, https://doi.org/10.1007/s00382-016-3014-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and Coauthors, 2020: The WRF-Hydro modeling system technical description (version 5.1.1). NCAR Tech. Note, 107 pp., https://ral.ucar.edu/sites/default/files/public/projects/wrf_hydro/technical-description-user-guide/wrf-hydro-v5.1.1-technical-description.pdf.

  • Hao, Z., F. Hao, Y. Xia, V. P. Singh, Y. Hong, X. Shen, and W. Ouyang, 2016: A statistical method for categorical drought prediction based on NLDAS-2. J. Appl. Meteor. Climatol., 55, 10491061, https://doi.org/10.1175/JAMC-D-15-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Jiang, X., G.-Y. Niu, and Z.-L. Yang, 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J. Geophys. Res., 114, D06109, https://doi.org/10.1029/2008JD010756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattge, J., and Coauthors, 2011: TRY—A global database of plant traits. Global Change Biol., 17, 29052935, https://doi.org/10.1111/j.1365-2486.2011.02451.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, D., S. Swenson, K. W. Oleson, D. M. Lawrence, R. Fisher, A. C. Lola da Costa, and P. Gentine, 2019: Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst., 11, 485513, https://doi.org/10.1029/2018MS001500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., D. M. Mocko, S. Wang, C. D. Peters-Lidard, and J. Borak, 2019: Assimilation of remotely sensed leaf area index into the Noah-MP land surface model: Impacts on water and carbon fluxes and states over the continental United States. J. Hydrometeor., 20, 13591377, https://doi.org/10.1175/JHM-D-18-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., and Coauthors, 2019: Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res., 55, 75647586, https://doi.org/10.1029/2018WR024618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2021: Representation of plant hydraulics in the Noah-MP land surface model: Model development and multi-scale evaluation. J. Adv. Model. Earth Syst., 13, e2020MS002214, https://doi.org/10.1029/2020MS002214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., M. A. Rajib, Z.-L. Yang, M. Somos-Valenzuela, V. Merwade, D. R. Maidment, Y. Wang, and L. Chen, 2018: Spatiotemporal evaluation of simulated evapotranspiration and streamflow over Texas using the WRF-hydro-RAPID modeling framework. J. Amer. Water Resour. Assoc., 54, 4054, https://doi.org/10.1111/1752-1688.12585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., B. R. Scanlon, L. Longuevergne, A. Y. Sun, D. N. Fernando, and H. Save, 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, https://doi.org/10.1002/grl.50655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and S. J. Kollet, 2008: Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci., 1, 665669, https://doi.org/10.1038/ngeo315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and L. E. Condon, 2016: Connections between groundwater flow and transpiration partitioning. Science, 353, 377380, https://doi.org/10.1126/science.aaf7891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, X. H., J. P. Evans, and M. F. McCabe, 2014: The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeor., 15, 759776, https://doi.org/10.1175/JHM-D-13-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McColl, K. A., Q. He, H. Lu, and D. Entekhabi, 2019: Short-term and long-term surface soil moisture memory time scales are spatially anticorrelated at global scales. J. Hydrometeor., 20, 11651182, https://doi.org/10.1175/JHM-D-18-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., L. N. Long, Y. Xia, S. K. Yang, J. E. Schemm, and M. Ek, 2011: Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS. J. Hydrometeor., 12, 181205, https://doi.org/10.1175/2010JHM1310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z. L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Y.-H. Fang, L.-L. Chang, J. Jin, H. Yuan, and X. Zeng, 2020: Enhancing the Noah-MP ecosystem response to droughts with an explicit representation of plant water storage supplied by dynamic root water uptake. J. Adv. Model. Earth Syst., 12, e2020MS002062, https://doi.org/10.1029/2020MS002062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl, and C. R. Wilson, 2004: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31, L20504, https://doi.org/10.1029/2004GL020873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., S. V. Kumar, C. D. Peters-Lidard, K. Harrison, and S. Zhou, 2013: Impact of land model calibration on coupled land–atmosphere prediction. J. Hydrometeor., 14, 13731400, https://doi.org/10.1175/JHM-D-12-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Save, H., 2019: CSR GRACE RL06 mascon solutions. Texas Data Repository Dataverse, accessed 4 November 2019, https://doi.org/10.18738/T8/UN91VR.

    • Crossref
    • Export Citation
  • Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, https://doi.org/10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaber, P. R., F. P. Kapinos, and G. L. Knapp, 1987: Hydrologic unit maps. U.S. Geological Survey Water Supply Paper 2294, 63 pp., https://pubs.usgs.gov/wsp/wsp2294/pdf/wsp_2294.pdf.

  • Shangguan, W., T. Hengl, J. Mendes de Jesus, H. Yuan, and Y. Dai, 2017: Mapping the global depth to bedrock for land surface modeling. J. Adv. Model. Earth Syst., 9, 6588, https://doi.org/10.1002/2016MS000686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, A. B., 2020: U.S. billion-dollar weather and climate disasters. NOAA/National Centers for Environmental Information, accessed 7 December 2020, https://www.ncdc.noaa.gov/billions/.

  • Sun, Y., R. Fu, R. Dickinson, J. Joiner, C. Frankenberg, L. Gu, Y. Xia, and N. Fernando, 2015: Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res. Biogeosci., 120, 24272440, https://doi.org/10.1002/2015JG003150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and D. M. Lawrence, 2015: A GRACE-based assessment of interannual groundwater dynamics in the Community Land Model. Water Resour. Res., 51, 88178833, https://doi.org/10.1002/2015WR017582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., J. Wahr, and P. C. D. Milly, 2003: Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 39, 1223, https://doi.org/10.1029/2002WR001808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., P. J. F. Yeh, J. Wahr, and J. Famiglietti, 2006: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett., 33, L16401, https://doi.org/10.1029/2006GL026962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tramontana, G., and Coauthors, 2016: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13, 42914313, https://doi.org/10.5194/bg-13-4291-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., G.-Y. Niu, Y.-H. Fang, R.-J. Wu, J.-J. Yu, G.-F. Yuan, S. P. Pozdniakov, and R. L. Scott, 2018: Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake. Water Resour. Res., 54, 15601575, https://doi.org/10.1002/2017WR021061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2009: NLDAS Primary Forcing Data L4 Hourly 0.125 × 0.125 degree V002. NASA Goddard Earth Science Data and Information Services Center, accessed 22 November 2020, https://doi.org/10.5067/6J5LHHOHZHN4.

    • Crossref
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, D. Mocko, C. D. Peters-Lidard, J. Sheffield, J. Dong, and E. F. Wood, 2014: Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble. J. Hydrometeor., 15, 16361650, https://doi.org/10.1175/JHM-D-13-058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., S. Liang, J. Wang, Y. Xiang, X. Zhao, and J. Song, 2016: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens., 54, 53015318, https://doi.org/10.1109/TGRS.2016.2560522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, H., and Coauthors, 2020: Falsification-oriented signature-based evaluation for guiding the development of land surface models and the enhancement of observations. J. Adv. Model. Earth Syst., 12, e2020MS002132, https://doi.org/10.1029/2020MS002132.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 652 0 0
Full Text Views 1101 601 74
PDF Downloads 719 243 15