Implementation of Snowpack Treatment in the CPC Water Balance Model and Its Impact on Drought Assessment

Jorge Arevalo aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
bDepartamento de Meteorologia, Universidad de Valparaiso, Valparaiso, Chile

Search for other papers by Jorge Arevalo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6889-5395
,
Josh Welty aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Josh Welty in
Current site
Google Scholar
PubMed
Close
,
Yun Fan cNOAA/National Weather Service/National Centers for Environmental Protection/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Yun Fan in
Current site
Google Scholar
PubMed
Close
, and
Xubin Zeng aDepartment of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Droughts are a worldwide concern, thus assessment efforts are conducted by many centers around the world, mainly through simple drought indices, which usually neglect important hydrometeorological processes or require variables available only from complex land surface models (LSMs). The U.S. Climate Prediction Center (CPC) uses the Leaky Bucket (LB) water-balance model to postprocess temperature and precipitation, providing soil moisture (SM) anomalies to assess drought conditions. However, despite its crucial role in the water cycle, snowpack has been neglected by LB and most drought indices. Taking advantage of the high-quality snow water equivalent (SWE) data from The University of Arizona (UA), a single-layer snow scheme, forced by daily temperature and precipitation only, is developed for LB implementation and tested with two independent forcing datasets. Compared against the UA and SNOTEL SWE data over CONUS, LB outperforms a sophisticated LSM (Noah/NLDAS-2), with the median LB versus SNOTEL correlation (RMSE) about 40% (26%) higher (lower) than that from Noah/NLDAS-2, with only slight differences due to different forcing datasets. The changes in the temporal variability of SM due to the snowpack treatment lead to improved temporal and spatial distribution of drought conditions in the LB simulations compared to the reference U.S. Drought Monitor maps, highlighting the importance of snowpack inclusion in drought assessment. The simplicity but reasonable reliability of the LB with snowpack treatment makes it suitable for drought monitoring and forecasting in both snow-covered and snow-free areas, while only requiring precipitation and temperature data (markedly less than other water-balance-based indices).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0201.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jorge Arevalo, jorgearevalo@email.arizona.edu

Abstract

Droughts are a worldwide concern, thus assessment efforts are conducted by many centers around the world, mainly through simple drought indices, which usually neglect important hydrometeorological processes or require variables available only from complex land surface models (LSMs). The U.S. Climate Prediction Center (CPC) uses the Leaky Bucket (LB) water-balance model to postprocess temperature and precipitation, providing soil moisture (SM) anomalies to assess drought conditions. However, despite its crucial role in the water cycle, snowpack has been neglected by LB and most drought indices. Taking advantage of the high-quality snow water equivalent (SWE) data from The University of Arizona (UA), a single-layer snow scheme, forced by daily temperature and precipitation only, is developed for LB implementation and tested with two independent forcing datasets. Compared against the UA and SNOTEL SWE data over CONUS, LB outperforms a sophisticated LSM (Noah/NLDAS-2), with the median LB versus SNOTEL correlation (RMSE) about 40% (26%) higher (lower) than that from Noah/NLDAS-2, with only slight differences due to different forcing datasets. The changes in the temporal variability of SM due to the snowpack treatment lead to improved temporal and spatial distribution of drought conditions in the LB simulations compared to the reference U.S. Drought Monitor maps, highlighting the importance of snowpack inclusion in drought assessment. The simplicity but reasonable reliability of the LB with snowpack treatment makes it suitable for drought monitoring and forecasting in both snow-covered and snow-free areas, while only requiring precipitation and temperature data (markedly less than other water-balance-based indices).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0201.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jorge Arevalo, jorgearevalo@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.03 MB)
Save
  • Behrangi, A., X. Yin, S. Rajagopal, D. Stampoulis, and H. Ye, 2018: On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Quart. J. Roy. Meteor. Soc., 144, 89102, https://doi.org/10.1002/qj.3240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blahušiaková, A., M. Matoušková, M. Jenicek, O. Ledvinka, Z. Kliment, J. Podolinská, and Z. Snopková, 2020: Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrol. Sci. J., 65, 20832096, https://doi.org/10.1080/02626667.2020.1784900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloomfield, J. P., and B. P. Marchant, 2013: Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol. Earth Syst. Sci., 17, 47694787, https://doi.org/10.5194/hess-17-4769-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., N. Dawson, and X. Zeng, 2016a: Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth Space Sci., 3, 246256, https://doi.org/10.1002/2016EA000174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., X. Zeng, and N. Dawson, 2016b: Why do global reanalyses and land data assimilation products underestimate snow water equivalent? J. Hydrometeor., 17, 27432761, https://doi.org/10.1175/JHM-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., X. Zeng, and N. Dawson, 2019: Daily 4 km gridded SWE and snow depth from assimilated in-situ and modeled data over the Conterminous US, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 1 July 2019, https://doi.org/10.5067/0GGPB220EX6A.

    • Crossref
    • Export Citation
  • Cho, E., J. M. Jacobs, and C. M. Vuyovich, 2020: The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three observation-based gridded SWE data sets by seasonal snow and land cover classifications. Water Resour. Res., 56, e2019WR025813, https://doi.org/10.1029/2019WR025813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. Zhao, 2017: Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144, 519533, https://doi.org/10.1007/s10584-016-1705-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, N., P. Broxton, and X. Zeng, 2017: A new snow density parameterization for land data initialization. J. Hydrometeor., 18, 197207, https://doi.org/10.1175/JHM-D-16-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, N., P. Broxton, and X. Zeng, 2018: Evaluation of remotely sensed snow water equivalent and snow cover extent over the contiguous United States. J. Hydrometeor., 19, 17771791, https://doi.org/10.1175/JHM-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doesken, N. J., T. B. McKee, and J. Kleist, 1991: Development of a surface water supply index for the western United States. Final Rep., 84 pp.

  • Fan, Y., and H. M. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, https://doi.org/10.1029/2003JD004345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. M. van den Dool, 2011: Bias correction and forecast skill of NCEP GFS ensemble week-1 and week-2 precipitation, 2-m surface air temperature, and soil moisture forecasts. Wea. Forecasting, 26, 355370, https://doi.org/10.1175/WAF-D-10-05028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. M. van den Dool, and W. Wu, 2011: Verification and intercomparison of multimodel simulated land surface hydrological datasets over the United States. J. Hydrometeor., 12, 531555, https://doi.org/10.1175/2011JHM1317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., M. Dettinger, and S. Rajagopal, 2017a: Defining snow drought and why it matters. Eos, Trans. Amer. Geophys. Union, 98, 1517, https://doi.org/10.1029/2017EO068775.

    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., M. L. Kaplan, P. Z. Klos, T. Link, J. P. McNamara, S. Rajagopal, R. Schumer, and C. M. Steele, 2017b: Rain or snow: Hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci., 21, 122, https://doi.org/10.5194/hess-21-1-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R. J., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. van den Dool, and K. P. Georgakakos, 1996: Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and A. AghaKouchak, 2020: Global snow drought hot spots and characteristics. Proc. Natl. Acad. Sci. USA, 117, 19 75319 759, https://doi.org/10.1073/pnas.1915921117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenicek, M., J. Seibert, M. Zappa, M. Staudinger, and T. Jonas, 2016: Importance of maximum snow accumulation for summer low flows in humid catchments. Hydrol. Earth Syst. Sci., 20, 859874, https://doi.org/10.5194/hess-20-859-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., 2014: The impracticality of a universal drought definition. Theor. Appl. Climatol., 117, 607611, https://doi.org/10.1007/s00704-013-1025-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–183.

  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukherjee, S., A. Mishra, and K. E. Trenberth, 2018: Climate change and drought: A perspective on drought indices. Curr. Climate Change Rep., 4, 145163, https://doi.org/10.1007/s40641-018-0098-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., and R. Srinivasan, 2005: Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteor., 133, 6988, https://doi.org/10.1016/j.agrformet.2005.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NDMC/NOAA/USDA, 1999: U.S. Drought Monitor. Accessed 5 March 2020, https://droughtmonitor.unl.edu/.

  • Naumann, G., and Coauthors, 2018: Global changes in drought conditions under different levels of warming. Geophys. Res. Lett., 45, 32853296, https://doi.org/10.1002/2017GL076521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp.

  • Petersky, R., and A. Harpold, 2018: Now you see it, now you don’t: A case study of ephemeral snowpacks and soil moisture response in the Great basin, USA. Hydrol. Earth Syst. Sci., 22, 48914906, https://doi.org/10.5194/hess-22-4891-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samimi, S., and S. J. Marshall, 2017: Diurnal cycles of meltwater percolation, refreezing, and drainage in the supraglacial snowpack of Haig glacier, Canadian Rocky Mountains. Front. Earth Sci., 5, 6, https://doi.org/10.3389/feart.2017.00006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, F. Wen, and E. F. Wood, 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, https://doi.org/10.1029/2004JD005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staudinger, M., K. Stahl, and J. Seibert, 2014: A drought index accounting for snow. Water Resour. Res., 50, 78617872, https://doi.org/10.1002/2013WR015143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutanto, S. J., M. van der Weert, N. Wanders, V. Blauhut, and H. A. J. Van Lanen, 2019: Moving from drought hazard to impact forecasts. Nat. Commun., 10, 4945, https://doi.org/10.1038/s41467-019-12840-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The drought monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Techel, F., and C. Pielmeier, 2011: Point observations of liquid water content in wet snow—Investigating methodical, spatial and temporal aspects. Cryosphere, 5, 405418, https://doi.org/10.5194/tc-5-405-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • The PRISM Climate Group, 2004: PRISM gridded climate data. Oregon State University, accessed 1 July 2019, http://prism.oregonstate.edu/.

  • Thomas, B. F., J. S. Famiglietti, F. W. Landerer, D. N. Wiese, N. P. Molotch, and D. F. Argus, 2017: GRACE groundwater drought index: Evaluation of California central valley groundwater drought. Remote Sens. Environ., 198, 384392, https://doi.org/10.1016/j.rse.2017.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. Van Der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H., J. Huang, and Y. Fan, 2003: Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J. Geophys. Res., 108, 861716, https://doi.org/10.1029/2002JD003114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., 2015: Hydrological drought explained. Wiley Interdiscip. Rev.: Water, 2, 359392, https://doi.org/10.1002/wat2.1085.

  • Van Loon, A. F., and H. A. J. Van Lanen, 2012: A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci., 16, 19151946, https://doi.org/10.5194/hess-16-1915-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969, https://doi.org/10.1175/2010WAF2222345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., P. Broxton, Y. Fang, A. Behrangi, M. Barlage, X. Zeng, and G.-Y. Niu, 2019: A wet-bulb temperature-based rain-snow partitioning scheme improves snowpack prediction over the drier western United States. Geophys. Res. Lett., 46, 13 82513 835, https://doi.org/10.1029/2019GL085722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10, 111120, https://doi.org/10.1080/02508068508686328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2009: NLDAS primary forcing data L4 hourly 0.125 × 0.125 degree V002 (NLDAS_FORA0125_H). NASA/GSFC/HSL Goddard Earth Sciences Data and Information Services Center, accessed 1 July 2019, https://doi.org/10.5067/6J5LHHOHZHN4.

    • Crossref
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: NLDAS Noah Land Surface Model L4 hourly 0.125 × 0.125 degree V002 (NLDAS_NOAH0125_H). NASA/GSFC/HSL Goddard Earth Sciences Data and Information Services Center, accessed 23 August 2019, https://doi.org/10.5067/47Z13FNQODKV.

    • Crossref
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., P. Broxton, and N. Dawson, 2018: Snowpack change from 1982 to 2016 over conterminous United States. Geophys. Res. Lett., 45, 12 94012 947, https://doi.org/10.1029/2018GL079621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., X. Zhao, J. Jin, and P. Wu, 2015: Development and evaluation of a physically based multiscalar drought index: The Standardized Moisture Anomaly Index. J. Geophys. Res. Atmos., 120, 11 57511 588, https://doi.org/10.1002/2015JD023772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., Y. Xia, L. S. Huning, J. Wei, G. Wang, and A. AghaKouchak, 2019: A framework for global multicategory and multiscalar drought characterization accounting for snow processes. Water Resour. Res., 55, 92589278, https://doi.org/10.1029/2019WR025529.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 359 0 0
Full Text Views 329 117 5
PDF Downloads 238 78 7