Generation of an Improved Precipitation Dataset from Multisource Information over the Tibetan Plateau

Zhongkun Hong aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Zhongkun Hong in
Current site
Google Scholar
PubMed
Close
,
Zhongying Han aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Zhongying Han in
Current site
Google Scholar
PubMed
Close
,
Xueying Li aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Xueying Li in
Current site
Google Scholar
PubMed
Close
,
Di Long aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Di Long in
Current site
Google Scholar
PubMed
Close
,
Guoqiang Tang aState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Guoqiang Tang in
Current site
Google Scholar
PubMed
Close
, and
Jianhua Wang bState Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing, China

Search for other papers by Jianhua Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation over the Tibetan Plateau (TP), known as Asia’s water tower, plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP, which features complex terrain and a harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large, poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) dataset was generated at a daily time scale and a spatial resolution of 0.1° across the TP for the 1998–2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root-mean-square error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow Rivers in the TP. The MSP achieved the best Nash–Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004–14. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high-quality precipitation data for hydrological research.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0252.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Di Long, dlong@tsinghua.edu.cn

Abstract

Precipitation over the Tibetan Plateau (TP), known as Asia’s water tower, plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP, which features complex terrain and a harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large, poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) dataset was generated at a daily time scale and a spatial resolution of 0.1° across the TP for the 1998–2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root-mean-square error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow Rivers in the TP. The MSP achieved the best Nash–Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004–14. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high-quality precipitation data for hydrological research.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0252.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Di Long, dlong@tsinghua.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 388.71 KB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alijanian, M., G. R. Rakhshandehroo, A. K. Mishra, and M. Dehghani, 2017: Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol., 37, 48964914, https://doi.org/10.1002/joc.5131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000: Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng., 5, 115123, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baez-Villanueva, O. M., and Coauthors, 2020: RF-MEP: A novel random forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayissa, Y., T. Tadesse, G. Demisse, and A. Shiferaw, 2017: Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile basin, Ethiopia. Remote Sens., 9, 669, https://doi.org/10.3390/rs9070669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. van Dijk, V. Levizzani, J. Schellekens, D. G. Miralles, B. Martens, and A. de Roo, 2017a: MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589615, https://doi.org/10.5194/hess-21-589-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2017b: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and Coauthors, 2013: The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biol., 19, 29402955, https://doi.org/10.1111/gcb.12277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Long, Y. Hong, C. Zeng, and D. Yan, 2017: Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res., 53, 24312466, https://doi.org/10.1002/2016WR019656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, Y.-M., K.-L. Hsu, F.-J. Chang, Y. Hong, and S. Sorooshian, 2007: Merging multiple precipitation sources for flash flood forecasting. J. Hydrol., 340, 183196, https://doi.org/10.1016/j.jhydrol.2007.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018: Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart. J. Roy. Meteor. Soc., 144, 292312, https://doi.org/10.1002/qj.3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, M., and D. Long, 2018: Development of a hydrological model driven and calibrated by multisource remote sensing data in poorly gauged basins. Master’s dissertation, Dept. of Hydraulic Engineering, Tsinghua University, 61 pp., https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202001&filename=1019603516.nh.

  • Farr, T. G., and Coauthors, 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

  • Fick, S. E., and R. J. Hijmans, 2017: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 43024315, https://doi.org/10.1002/joc.5086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 121, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, https://doi.org/10.5194/hess-17-837-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., W. F. Krajewski, M. L. Morrissey, G. J. Huffman, and R. F. Adler, 2005: A detailed evaluation of GPCP 1 degrees daily rainfall estimates over the Mississippi River basin. J. Appl. Meteor., 44, 665681, https://doi.org/10.1175/JAM2233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, P., D. Long, Z. Han, M. Du, L. Dai, and X. Hao, 2019: Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sens. Environ., 224, 4459, https://doi.org/10.1016/j.rse.2019.01.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, P., D. Long, X. Li, Q. Huang, L. Dai, and Z. Sun, 2021: A dual state-parameter updating scheme using the particle filter and high-spatial-resolution remotely sensed snow depths to improve snow simulation. J. Hydrol., 594, 125979, https://doi.org/10.1016/j.jhydrol.2021.125979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z., D. Long, Y. Fang, A. Hou, and Y. Hong, 2019: Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. J. Hydrol., 570, 96105, https://doi.org/10.1016/j.jhydrol.2018.12.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z., D. Long, Q. Huang, X. Li, F. Zhao, and J. Wang, 2020: Improving reservoir outflow estimation for ungauged basins using satellite observations and a hydrological model. Water Resour. Res., 56, e2020WR027590, https://doi.org/10.1029/2020WR027590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., N. W. Chaney, M. Schleiss, and J. Sheffield, 2016: Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res., 52, 82178237, https://doi.org/10.1002/2016WR019034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, https://doi.org/10.1002/joc.1276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q., D. Long, M. Du, C. Zeng, X. Li, A. Hou, and Y. Hong, 2018a: An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data. Remote Sens. Environ., 211, 112128, https://doi.org/10.1016/j.rse.2018.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q., D. Long, M. Du, C. Zeng, G. Qiao, X. Li, A. Hou, and Y. Hong, 2018b: Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River. Remote Sens. Environ., 219, 115134, https://doi.org/10.1016/j.rse.2018.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q., D. Long, M. Du, Z. Han, and P. Han, 2020: Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: Implications for the SWOT Mission. Water Resour. Res., 56, e2020WR027309, https://doi.org/10.1029/2020WR027309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Huffman, G. J., R. F. Adler, A. Behrangi, D. T. Bolvin, E. J. Nelkin, and Y. Song, 2020: Algorithm Theoretical Basis Document (ATBD) for global precipitation climatology project version 3.1 precipitation data. NASA, 32 pp., https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/GPCP_ATBD_V3.1.pdf.

    • Crossref
    • Export Citation
  • Hussain, Y., F. Satgé, M. B. Hussain, H. Martinez-Carvajal, M.-P. Bonnet, M. Cárdenas-Soto, H. L. Roig, and G. Akhter, 2018: Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theor. Appl. Climatol., 131, 11191132, https://doi.org/10.1007/s00704-016-2027-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, S., L. Ren, B. Yong, Y. Hong, X. Yang, and F. Yuan, 2016: Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chin. Geogr. Sci., 26, 439455, https://doi.org/10.1007/s11769-016-0818-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katiraie-Boroujerdy, P.-S., A. A. Asanjan, K. Hsu, and S. Sorooshian, 2017: Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res., 193, 3649, https://doi.org/10.1016/j.atmosres.2017.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K., J. Park, J. Baik, and M. Choi, 2017: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95105, https://doi.org/10.1016/j.atmosres.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and D. Long, 2020: An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach. Remote Sens. Environ., 248, 111966, https://doi.org/10.1016/j.rse.2020.111966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. Long, Z. Han, B. R. Scanlon, Z. Sun, P. Han, and A. Hou, 2019a: Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resour. Res., 55, 86088630, https://doi.org/10.1029/2019WR025196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. Long, Q. Huang, P. Han, F. Zhao, and Y. Wada, 2019b: High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data, 11, 16031627, https://doi.org/10.5194/essd-11-1603-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Y. Liu, S. Wang, X. Yang, L. Wang, M. H. A. Baig, W. Chi, and Z. Wang, 2018: Evaluation of spatial and temporal performances of ERA-Interim precipitation and temperature in mainland China. J. Climate, 31, 43474365, https://doi.org/10.1175/JCLI-D-17-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, D., and B. Yong, 2018: Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sens., 10, 2022, https://doi.org/10.3390/rs10122022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, L., T. Zhang, O. W. Frauenfeld, B. Ye, D. Yang, and D. Qin, 2009: Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res., 114, D09105, https://doi.org/10.1029/2008JD011178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., G. Tang, D. Long, B. Yong, L. Zhong, W. Wan, and Y. Hong, 2016: Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, https://doi.org/10.3390/rs8070569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2018: Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res. Atmos., 123, 814834, https://doi.org/10.1002/2017JD026648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Xu, S. Zhu, J. Yang, G. Tang, Y. Yang, Z. Shi, and Y. Hong, 2020: AIMERG: A new Asian precipitation dataset (0.1°/half-hourly, 2000-2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst. Sci. Data, 12, 15251544, https://doi.org/10.5194/essd-12-1525-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Moelg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mega, T., T. Ushio, T. Matsuda, T. Kubota, M. Kachi, and R. Oki, 2019: Gauge-adjusted global satellite mapping of precipitation. IEEE Trans. Geosci. Remote Sens., 57, 19281935, https://doi.org/10.1109/TGRS.2018.2870199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, S., P. Zhao, S. Yang, and J. Chen, 2009: Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J. Geophys. Res., 114, D10104, https://doi.org/10.1029/2008JD011559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, S., F. Song, P. Udmale, J. Jin, B. R. Thapa, and H. Ishidaira, 2017: Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China. Adv. Meteor., 2017, 1803492, https://doi.org/10.1155/2017/1803492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, K., T. Ushio, T. Iguchi, N. Takahashi, and K. Iwanami, 2005: The global satellite mapping of precipitation (GSMaP) project. Proc. 2005 IEEE Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, IEEE, 3414–3416, https://doi.org/10.1109/IGARSS.2005.1526575.

    • Crossref
    • Export Citation
  • Pan, B., K. Hsu, A. AghaKouchak, and S. Sorooshian, 2019: Improving precipitation estimation using convolutional neural network. Water Resour. Res., 55, 23012321, https://doi.org/10.1029/2018WR024090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., C. K. Fisher, N. W. Chaney, W. Zhan, W. T. Crow, F. Aires, D. Entekhabi, and E. F. Wood, 2015: Triple collocation: Beyond three estimates and separation of structural/non-structural errors. Remote Sens. Environ., 171, 299310, https://doi.org/10.1016/j.rse.2015.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pang, G., X. Wang, and M. Yang, 2017: Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int., 444, 8796, https://doi.org/10.1016/j.quaint.2016.08.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, https://doi.org/10.1007/s10584-009-9733-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y., D. Yang, B. Gao, T. Wang, J. Chen, Y. Chen, Y. Wang, and G. Zheng, 2017: Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Sci. Total Environ., 605–606, 830841, https://doi.org/10.1016/j.scitotenv.2017.06.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., L. V. Alexander, G. Potter, M. Bador, R. Juca, S. Contractor, M. G. Bosilovich, and S. Cloche, 2019: FROGS: A daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data, 11, 10171035, https://doi.org/10.5194/essd-11-1017-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, https://doi.org/10.1175/2010JHM1289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., T. M. Smith, and P. A. Arkin, 2008: A new merged analysis of precipitation utilizing satellite and reanalysis data. J. Geophys. Res., 113, D22103, https://doi.org/10.1029/2008JD010310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifi, E., B. Saghafian, and R. Steinacker, 2019: Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. J. Geophys. Res. Atmos., 124, 789805, https://doi.org/10.1029/2018JD028795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, M. Pan, H. Beck, G. Coccia, A. Serrat-Capdevila, and K. Verbist, 2018: Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resour. Res., 54, 97249758, https://doi.org/10.1029/2017WR022437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., and A. Xiong, 2016: Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol., 36, 252265, https://doi.org/10.1002/joc.4341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., A. Y. Xiong, Y. Wang, and P. P. Xie, 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, https://doi.org/10.1029/2009JD012097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., A. Xiong, Y. Hong, J. Yu, Y. Pan, Z. Chen, and M. Saharia, 2014a: Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens., 35, 68436858, https://doi.org/10.1080/01431161.2014.960612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., P. Zhao, Y. Pan, and J. Yu, 2014b: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos., 119, 30633075, https://doi.org/10.1002/2013JD020686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, https://doi.org/10.1029/2009JD011788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, S., Y. Niu, L. Su, and X. Xia, 2013: Tectonics of the North Qilian Orogen, NW China. Gondwana Res., 23, 13781401, https://doi.org/10.1016/j.gr.2012.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, M. L., A. L. Ibrahim, Z. Duan, A. P. Cracknell, and V. Chaplot, 2015: Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens., 7, 15041528, https://doi.org/10.3390/rs70201504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., Y. Ma, D. Long, L. Zhong, and Y. Hong, 2016a: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152167, https://doi.org/10.1016/j.jhydrol.2015.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., Z. Zeng, D. Long, X. Guo, B. Yong, W. Zhang, and Y. Hong, 2016b: Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeor., 17, 121137, https://doi.org/10.1175/JHM-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., D. Long, A. Behrangi, C. Wang, and Y. Hong, 2018a: Exploring deep neural networks to retrieve rain and snow in high latitudes using multisensor and reanalysis data. Water Resour. Res., 54, 82538278, https://doi.org/10.1029/2018WR023830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., D. Long, Y. Hong, J. Gao, and W. Wan, 2018b: Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars. Remote Sens. Environ., 208, 8296, https://doi.org/10.1016/j.rse.2018.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, and Z. Hao, 2014a: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423437, https://doi.org/10.1016/j.jhydrol.2014.07.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, L. Zhang, and Z. Hao, 2014b: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, https://doi.org/10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, C., R. M. Graham, K. Wang, S. Gerland, and M. A. Granskog, 2019: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere, 13, 16611679, https://doi.org/10.5194/tc-13-1661-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation