Interseasonal and Interbasins Hydrological Coupling in South America

Paulo Rodrigo Zanin aPostgraduate Studies in Climate and Environment (CLIAMB), National Institute for Amazon Research (INPA), Manaus, Amazonas, Brazil

Search for other papers by Paulo Rodrigo Zanin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4473-2441
and
Prakki Satyamurty aPostgraduate Studies in Climate and Environment (CLIAMB), National Institute for Amazon Research (INPA), Manaus, Amazonas, Brazil
bNational Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil

Search for other papers by Prakki Satyamurty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interseasonal and interbasins hydrological coupling between the Amazon and the La Plata watersheds is obtained with the help of ERA-5 atmospheric reanalysis, MERGE/CPTEC precipitation, GLEAM evapotranspiration, and the GLDAS/Noah soil moisture datasets. The hypotheses formulated in a previous work by Zanin and Satyamurty about the hydrological processes interconnecting the Amazon Basin and the La Plata Basin are tested. A new method for finding the source–sink relationships among the boxes (regions) is presented. The precipitation recycling, frequency of source–sink behaviors, the soil moisture memory, and the continental moisture transport between remote regions are evaluated. The main result of this study is that the amount of water precipitated over the southeastern region of the Amazon Basin at the end of the South American monsoon during the autumn season influences the amount of precipitation during the winter season over the central-western region of the La Plata Basin.

Supplemental information related to this paper is available at the Journals Online website.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paulo Rodrigo Zanin, paulorzgeo@gmail.com

Abstract

The interseasonal and interbasins hydrological coupling between the Amazon and the La Plata watersheds is obtained with the help of ERA-5 atmospheric reanalysis, MERGE/CPTEC precipitation, GLEAM evapotranspiration, and the GLDAS/Noah soil moisture datasets. The hypotheses formulated in a previous work by Zanin and Satyamurty about the hydrological processes interconnecting the Amazon Basin and the La Plata Basin are tested. A new method for finding the source–sink relationships among the boxes (regions) is presented. The precipitation recycling, frequency of source–sink behaviors, the soil moisture memory, and the continental moisture transport between remote regions are evaluated. The main result of this study is that the amount of water precipitated over the southeastern region of the Amazon Basin at the end of the South American monsoon during the autumn season influences the amount of precipitation during the winter season over the central-western region of the La Plata Basin.

Supplemental information related to this paper is available at the Journals Online website.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paulo Rodrigo Zanin, paulorzgeo@gmail.com

Supplementary Materials

    • Supplemental Material 1 (PDF 195 KB)
    • Supplemental Material 2 (PDF 232 KB)
    • Supplemental Material 3 (PDF 175 KB)
    • Supplemental Material 4 (PDF 309 KB)
    • Supplemental Material 5 (PDF 308 KB)
    • Supplemental Material 6 (PDF 140 KB)
    • Supplemental Material 7 (PDF 140 KB)
    • Supplemental Material 8 (PDF 142 KB)
    • Supplemental Material 9 (PDF 142 KB)
    • Supplemental Material 10 (PDF 143 KB)
Save
  • Arraut, J. M., and P. Satyamurty, 2009: Precipitation and water vapor transport in the Southern Hemisphere with emphasis on the South American region. J. Appl. Meteor. Climatol., 48, 19021912, https://doi.org/10.1175/2009JAMC2030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arraut, J. M., C. Nobre, H. M. J. Barbosa, G. Obregon, and J. Marengo, 2012: Aerial rivers and lakes: Looking at large-scale moisture transport and its relation to Amazonia and to subtropical rainfall in South America. J. Climate, 25, 543556, https://doi.org/10.1175/2011JCLI4189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and V. R. Barros, 2002: The hydrological cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630645, https://doi.org/10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., A. Rheinwalt, B. Bookhagen, H. M. J. Barbosa, N. Marwan, J. Marengo, and J. Kurths, 2014: The South American rainfall dipole: A complex network analysis of extreme events. Geophys. Res. Lett., 41, 73977405, https://doi.org/10.1002/2014GL061829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broedel, E., J. Tomasella, L. A. Cândido, and C. von Randow, 2017: Deep soil water dynamics in an undisturbed primary forest in central Amazonia: Differences between normal years and the 2005 drought. Hydrol. Processes, 31, 17491759, https://doi.org/10.1002/hyp.11143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruno, R. D., H. R. Rocha, H. C. Freitas, M. L. Goulden, and S. D. Miller, 2006: Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol. Processes, 20, 24772489, https://doi.org/10.1002/hyp.6211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Builes-Jaramillo, A., and G. Poveda, 2018: Conjoint analysis of surface and atmospheric water balances in the Andes–Amazon system. Water Resour. Res., 54, 34723489, https://doi.org/10.1029/2017WR021338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C3S, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Collini, E. A., E. H. Berbery, V. R. Barros, and M. E. Pyle, 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195213, https://doi.org/10.1175/2007JCLI1846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and G. F. Pires, 2010: Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol., 30, 19701979, https://doi.org/10.1002/joc.2048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, C. P. W., and P. Satyamurty, 2016: Inter-hemispheric and inter-zonal moisture transports and monsoon regimes. Int. J. Climatol. 36, 47054722, https://doi.org/10.1002/joc.4662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Rocha, H. R., A. O. Manzi, and J. Shuttleworth, 2009: Evapotranspiration. Amazonia and Global Change, Geophys. Monogr., Vol. 126, Amer. Geophys. Union, 261–272, https://doi.org/10.1029/2008GM000817.

    • Crossref
    • Export Citation
  • da Silva, A. E., and L. M. V. Carvalho, 2007: Large-scale index for South America Monsoon (LISAM). Atmos. Sci. Lett., 8, 5157, https://doi.org/10.1002/asl.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, https://doi.org/10.1175/2008JHM1016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, M. E., and V. R. Barros, 2011: Attribution of the river flow growth in the La Plata Basin. Int. J. Climatol., 31, 22342248, https://doi.org/10.1002/joc.2228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, L. Gimeno, and T. Ambrizzi, 2008: A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J. Geophys. Res., 113, D14128, https://doi.org/10.1029/2007JD009547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., J. Marengo, T. Ambrizzi, R. Niero, L. Moreira, and L. Gimeno, 2014: The role of Amazon Basin moisture on the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci., 18, 25772598, https://doi.org/10.5194/hess-18-2577-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, https://doi.org/10.1002/qj.49712051806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guedes, A. E. D. S., L. A. Candido, and A. R. S. Espirito Santo, 2013: Variabilidade do estoque de água continental e sua relação com as cheias e vazantes extremas na Amazônia. Rev. Ambient. Água, 8, 8899, https://doi.org/10.4136/ambi-agua.1137.

    • Search Google Scholar
    • Export Citation
  • Herdies, D. L., A. Silva, and M. A. F. Silva Dias, 2002: Moisture budget of the bimodal pattern of the summer circulation over South America. J. Geophys. Res., 107, 8075, https://doi.org/10.1029/2001JD000997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junquas, C., L. Li, C. S. Vera, H. L. Treut, and K. Takahashi, 2016: Influence of South America orography on summertime precipitation in southeastern South America. Climate Dyn., 46, 39413963, https://doi.org/10.1007/s00382-015-2814-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2005: Characteristics and spatio-temporal variability of the Amazon River basin water budget. Climate Dyn., 24, 1122, https://doi.org/10.1007/s00382-004-0461-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2009: Long-term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920s. Hydrol. Processes, 23, 32363244, https://doi.org/10.1002/hyp.7396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, https://doi.org/10.1002/joc.2254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Y. Fan, 2012b: The Role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res., 117, D15114, https://doi.org/10.1029/2012JD017540.

    • Search Google Scholar
    • Export Citation
  • Molina-Carpio, J., J. C. Espinoza, P. Vauchel, J. Ronchail, B. Gutierrez, J. L. Guyot, and L. Noriega, 2017: The hydroclimatology of the upper Madeira River basin: Spatio-temporal variability and trends. Hydrol. Sci. J., 62, 911927, https://doi.org/10.1080/02626667.2016.1267861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, D. C., and G. C. Runger, 2003: Applied Statistics and Probability for Engineers. 3rd ed. John Wiley & Sons, 822 pp.

  • Montini, T., C. Jones, and L. M. V. Carvalho, 2019: The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos., 124, 12001218, https://doi.org/10.1029/2018JD029634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nascimento, M. G., D. L. Herdies, and D. O. Souza, 2016: The South American water balance: The influence of low-level jet. J. Climate, 29, 14291449, https://doi.org/10.1175/JCLI-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neto, A. C. A., P. Satyamurty, and F. W. Correia, 2015: Some observed characteristics of frontal systems in the Amazon Basin. Meteor. Appl., 22, 617635, https://doi.org/10.1002/met.1497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A., and C. Mechoso, 2000: Interannual and interdecadal variability of the South Atlantic convergence zone. J. Climate, 128, 29472957, https://doi.org/10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rocha, V. M., F. W. S. Correia, and P. A. M. Fonseca, 2015: Reciclagem de precipitação na Amazônia: Um estudo de revisão. Rev. Bras. Meteor., 30, 5970, https://doi.org/10.1590/0102-778620140049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, D. A., and I. F. A. Cavalcanti, 2006: Simulations of the hydrologic cycle over southern South America using the CPTEC/COLA AGCM. J. Hydrometeor., 7, 916936, https://doi.org/10.1175/JHM534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronchail, J., D. Labat, J. Callède, G. Cochonneau, J.-L. Guyot, N. Filizola, and E. de Oliveira, 2005: Discharge variability within the Amazon basin. IAHS Publ., 296, 21–30.

  • Rozante, J. R., D. S. Moreira, L. G. G. Gonçalves, and D. Vila, 2010: Combining TRMM and surface observations of precipitation: Technique and validation over South America. Wea. Forecasting, 25, 885894, https://doi.org/10.1175/2010WAF2222325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satyamurty, P., C. P. W. Costa, and A. O. Manzi, 2012: Moisture source for the Amazon basin: A study of contrasting years. Theor. Appl. Climatol., 111, 195209, https://doi.org/10.1007/s00704-012-0637-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, V. B. S., and E. H. Berbery, 2006: Intense rainfall events affecting the La Plata basin. J. Hydrometeor., 7, 769787, https://doi.org/10.1175/JHM520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and R. C. Ruscica, 2018: Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resour. Res., 54, 28912908, https://doi.org/10.1002/2017WR021682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spennemann, P. C., and A. C. Saulo, 2015: An estimation of land atmosphere coupling strength in South America using Global Land Data Assimilation System. Int. J. Climatol., 35, 41514166, https://doi.org/10.1002/joc.4274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, https://doi.org/10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staal, A., O. A. Tuinenburg, J. H. C. Bosmans, M. Holmgren, E. H. van Nes, M. Sheffer, D. C. Zemp, and S. C. Dekker, 2018: Forest-rainfall cascades buffer against drought across the Amazon. Nat. Climate Change, 8, 539543, https://doi.org/10.1038/s41558-018-0177-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., and D. P. Lettenmaier, 2009: Estimation of the surface water budget of the La Plata basin. J. Hydrometeor., 10, 981998, https://doi.org/10.1175/2009JHM1100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasella, J., M. G. Hodnett, L. A. Cuartas, A. D. Nobre, J. Waterloo, and S. M. Oliveira, 2008: The water balance of an Amazonia micro-catchment: The effect of interannual variability of rainfall on hydrological behavior. Hydrol. Processes, 22, 21332147, https://doi.org/10.1002/hyp.6813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and H. H. G. Savenije, 2011: Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys., 11, 18531863, https://doi.org/10.5194/acp-11-1853-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C. S., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villar, J. C. E., and Coauthors, 2009a: Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol., 29, 15741594, https://doi.org/10.1002/joc.1791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villar, J. C. E., and Coauthors, 2009b: Contrasting regional discharge evolutions in the Amazon Basin (1974–2004). J. Hydrol., 375, 297311, https://doi.org/10.1016/j.jhydrol.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wey, W. W. S., 2006: Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Pearson Addison Wesley, 614 pp.

  • Yang, Z., and F. Dominguez, 2019: Investigating land surface effects on the moisture transport over South America with a moisture tagging model. J. Climate, 32, 66276644, https://doi.org/10.1175/JCLI-D-18-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanin, P. R., and P. Satyamurty, 2020a: Hydrological processes interconnecting the two largest watersheds of South America from seasonal to intra-monthly time scales: A critical review. Int. J. Climatol., 40, 39714005, https://doi.org/10.1002/JOC.6443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanin, P. R., and P. Satyamurty, 2020b: Hydrological processes interconnecting the two largest watersheds of South America from multi-decadal to inter-annual time scales: A critical review. Int. J. Climatol., 40, 40064038, https://doi.org/10.1002/joc.6442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemp, D. C., and Coauthors, 2017: Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun., 8, 14681, https://doi.org/10.1038/ncomms14681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemp, D. C., C. F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig, 2014: On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys., 14, 13 33713 359, https://doi.org/10.5194/acp-14-13337-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K. M. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 426 0 0
Full Text Views 440 210 22
PDF Downloads 293 110 17