Vegetation Restoration Projects Intensify Intraregional Water Recycling Processes in the Agro-Pastoral Ecotone of Northern China

Xuejin Wang aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xuejin Wang in
Current site
Google Scholar
PubMed
Close
,
Baoqing Zhang aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Baoqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Feng Li aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Feng Li in
Current site
Google Scholar
PubMed
Close
,
Xiang Li aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xiang Li in
Current site
Google Scholar
PubMed
Close
,
Xuliang Li aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xuliang Li in
Current site
Google Scholar
PubMed
Close
,
Yibo Wang aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yibo Wang in
Current site
Google Scholar
PubMed
Close
,
Rui Shao aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Rui Shao in
Current site
Google Scholar
PubMed
Close
,
Jie Tian aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jie Tian in
Current site
Google Scholar
PubMed
Close
, and
Chansheng He aKey Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
bDepartment of Geography, Western Michigan University, Kalamazoo, Michigan

Search for other papers by Chansheng He in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

From 1998 to the present, the Chinese government has implemented numerous large-scale ecological programs to restore ecosystems and improve environmental protection in the agro-pastoral ecotone of northern China (APENC). However, it remains unclear how vegetation restoration modulates intraregional moisture cycles and changes regional water balance. To fill this gap, we first investigated the variation in precipitation (P) from the China Meteorological Forcing Dataset and evapotranspiration (ET) estimated using the Priestley–Taylor Jet Propulsion Laboratory model under two scenarios: dynamic vegetation (DV) and no dynamic vegetation (no-DV). We then used the dynamic recycling model to analyze the changes in precipitation recycling ratio (PRR). Finally, we examined how vegetation restoration modulates intraregional moisture recycling to change the regional water cycle in APENC. Results indicate P increased at an average rate of 4.42 mm yr−2 from 1995 to 2015. ET with DV exhibited a significant increase at a rate of 1.57, 3.58, 1.53, and 1.84 mm yr−2 in the four subregions, respectively, compared with no-DV, and the annual mean PRR values were 10.15%, 9.30%, 11.01%, and 12.76% in the four subregions, and significant increasing trends were found in the APENC during 1995–2015. Further analysis of regional moisture recycling shows that vegetation restoration does not increase local P directly, but has an indirect effect by enhancing moisture recycling process to produce more P by increasing PRR. Our findings show that large-scale ecological restoration programs have a positive effect on local moisture cycle and precipitation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0125.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Baoqing Zhang, baoqzhang@lzu.edu.cn; Chansheng He, he@wmich.edu

Abstract

From 1998 to the present, the Chinese government has implemented numerous large-scale ecological programs to restore ecosystems and improve environmental protection in the agro-pastoral ecotone of northern China (APENC). However, it remains unclear how vegetation restoration modulates intraregional moisture cycles and changes regional water balance. To fill this gap, we first investigated the variation in precipitation (P) from the China Meteorological Forcing Dataset and evapotranspiration (ET) estimated using the Priestley–Taylor Jet Propulsion Laboratory model under two scenarios: dynamic vegetation (DV) and no dynamic vegetation (no-DV). We then used the dynamic recycling model to analyze the changes in precipitation recycling ratio (PRR). Finally, we examined how vegetation restoration modulates intraregional moisture recycling to change the regional water cycle in APENC. Results indicate P increased at an average rate of 4.42 mm yr−2 from 1995 to 2015. ET with DV exhibited a significant increase at a rate of 1.57, 3.58, 1.53, and 1.84 mm yr−2 in the four subregions, respectively, compared with no-DV, and the annual mean PRR values were 10.15%, 9.30%, 11.01%, and 12.76% in the four subregions, and significant increasing trends were found in the APENC during 1995–2015. Further analysis of regional moisture recycling shows that vegetation restoration does not increase local P directly, but has an indirect effect by enhancing moisture recycling process to produce more P by increasing PRR. Our findings show that large-scale ecological restoration programs have a positive effect on local moisture cycle and precipitation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0125.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Baoqing Zhang, baoqzhang@lzu.edu.cn; Chansheng He, he@wmich.edu

Supplementary Materials

    • Supplemental Materials (PDF 1014.63 KB)
Save
  • Alexandre, R. E., and M. M. Gonzalo, 2014: Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula. Climate Dyn., 42, 32073231, https://doi.org/10.1007/s00382-013-1971-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, https://doi.org/10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atta-ur-Rahman, and M. Dawood, 2017: Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach. Climate Dyn., 48, 783797, https://doi.org/10.1007/s00382-016-3110-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagley, J. E., A. R. Desai, P. A. Dirmeyer, and J. A. Foley, 2012: Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets. Environ. Res. Lett., 7, 014009, https://doi.org/10.1088/1748-9326/7/1/014009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagley, J. E., A. R. Desai, K. J. Harding, P. K. Snyder, and J. A. Foley, 2014: Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon? J. Climate, 27, 345361, https://doi.org/10.1175/JCLI-D-12-00369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., 2014: Managing land and climate. Nat. Climate Change, 4, 330331, https://doi.org/10.1038/nclimate2221.

  • Berger, M., R. van der Ent, S. Eisner, V. Bach, and M. Finkbeiner, 2014: Water Accounting and Vulnerability Evaluation (WAVE): Considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ. Sci. Technol., 48, 45214528, https://doi.org/10.1021/es404994t.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisselink, B., and A. J. Dolman, 2008: Precipitation recycling: Moisture sources over Europe using ERA-40 data. J. Hydrometeor., 9, 10731083, https://doi.org/10.1175/2008JHM962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, E. M., A. J. Dolman, and J. Noilhan, 1994: The effect of forest on mesoscale rainfall: An example from HAPEX–MOBILHY. J. Appl. Meteor., 33, 445454, https://doi.org/10.1175/1520-0450(1994)033<0445:TEOFOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, A. M., A. L. Steiner, and D. J. Posselt, 2015: Regional modeling of surface-atmosphere interactions and their impact on Great Lakes hydroclimate. J. Geophys. Res. Atmos., 120, 10441064, https://doi.org/10.1002/2014JD022316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burde, G. I., and A. Zangvil, 2001: The estimation of regional precipitation recycling. Part I: Review of recycling models. J. Climate, 14, 24972508, https://doi.org/10.1175/1520-0442(2001)014<2497:TEORPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., D. Y. Yu, M. Georgescu, Z. Han, and J. G. Wu, 2015: Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett., 10, 124025, https://doi.org/10.1088/1748-9326/10/12/124025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202, https://doi.org/10.1002/qj.49710142802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., W. J. Quirk, S. H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 13661385, https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. Y., K. Yang, J. He, J. Qin, J. C. Shi, J. Y. Du, and Q. He, 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, https://doi.org/10.1029/2011JD015921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and R. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 20292045, https://doi.org/10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X. Z. Liang, and M. F. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dore, M. H. I., 2005: Climate change and changes in global precipitation patterns: What do we know? Environ. Int., 31, 11671181, https://doi.org/10.1016/j.envint.2005.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and L. B. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, https://doi.org/10.1002/qj.49712051806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, F., and Coauthors, 2015: Validity of five satellite-based latent heat flux algorithms for semi-arid ecosystems. Remote Sens., 7, 16 73316 755, https://doi.org/10.3390/rs71215853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, https://doi.org/10.1016/j.rse.2007.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., M. H. Costa, C. Delire, N. Ramankutty, and P. Snyder, 2003: Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front. Ecol. Environ., 1, 3844, https://doi.org/10.1890/1540-9295(2003)001[0038:GSHTEC]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, L. L., X. H. Gou, Y. Deng, Z. Q. Wang, F. Gu, and F. Wang, 2018: Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agric. For. Meteor., 260-261, 916, https://doi.org/10.1016/j.agrformet.2018.05.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change, 100, 172182, https://doi.org/10.1016/j.gloplacha.2012.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, L. J., W. Steffen, B. F. Jönsson, C. Folke, M. Falkenmark, and A. S. Johannessen, 2005: Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci., 102, 76127617, https://doi.org/10.1073/pnas.0500208102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., N. P. Klingaman, M. E. Demory, P. L. Vidale, A. G. Turner, and C. C. Stephan, 2018: The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability. Climate Dyn., 51, 41394156, https://doi.org/10.1007/s00382-017-4064-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y. P., and C. H. Wang, 2014: Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. J. Hydrol., 517, 826835, https://doi.org/10.1016/j.jhydrol.2014.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamed, K. H., 2008: Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol., 349, 350363, https://doi.org/10.1016/j.jhydrol.2007.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2014: Modeling the atmospheric response to irrigation in the great plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeor., 601, 16871703, https://doi.org/10.1175/JHM-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • He, J., K. Yang, W. J. Tang, H. Lu, J. Qin, Y. Y. Chen, and X. Li, 2020: The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data, 7, 111, https://doi.org/10.1038/s41597-020-0369-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X. L., and Coauthors, 2020: A Bayesian three-cornered hat (BTCH) method: Improving the terrestrial evapotranspiration estimation. Remote Sens., 12, 878, https://doi.org/10.3390/rs12050878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera-Estrada, J. E., J. A. Martinez, F. Dominguez, K. L. Findell, E. F. Wood, and J. Sheffield, 2019: Reduced moisture transport linked to drought propagation across North America. Geophys. Res. Lett., 46, 52435253, https://doi.org/10.1029/2019GL082475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L. J., L. H. Zhong, and Z. J. Ke, 2016: Precipitation recycling and soil-precipitation interaction across the arid and semi-arid regions of China. Int. J. Climatol., 36, 37083722, https://doi.org/10.1002/joc.4586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L. J., L. H. Zhong, and Z. J. Ke, 2017: Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theor. Appl. Climatol., 127, 513531, https://doi.org/10.1007/s00704-015-1645-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1948: Rank Correlation Methods. Charles Griffin, 160 pp.

  • Keys, P. W., and L. Wang-Erlandsson, 2018: On the social dynamics of moisture recycling. Earth Syst. Dyn., 9, 829847, https://doi.org/10.5194/esd-9-829-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije, 2012: Analyzing precipitation sheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 9, 733746, https://doi.org/10.5194/bg-9-733-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., L. Wang-Erlandsson, and L. J. Gordon, 2016: Revealing invisible water: Moisture recycling as an ecosystem service. PLoS One, 11, e0151993, https://doi.org/10.1371/journal.pone.0151993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., L. Wang-Erlandsson, L. J. Gordon, V. Galaz, and J. Ebbesson, 2017: Approaching moisture recycling governance. Global Environ. Change, 45, 1523, https://doi.org/10.1016/j.gloenvcha.2017.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E., Y. Q. He, M. Zhou, and J. J. Liang, 2015: Potential feedback of recent vegetation changes on summer rainfall in the Sahel. Phys. Geogr., 36, 449470, https://doi.org/10.1080/02723646.2015.1120139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. L., C. H. Wang, and D. Wu, 2018: Changes in precipitation recycling over arid regions in the Northern Hemisphere. Theor. Appl. Climatol., 131, 489502, https://doi.org/10.1007/s00704-016-1978-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., P. L. An, Z. H. Pan, X. M. Li, and Y. Liu, 2015: Farmers’ initiative on adaptation to climate change in the northern agro-pastoral ecotone. Int. J. Disaster Risk Reduct., 12, 278284, https://doi.org/10.1016/j.ijdrr.2015.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, R. P., T. J. Zhou, and Y. Qian, 2014: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27, 12711289, https://doi.org/10.1175/JCLI-D-13-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S., J. M. Feng, J. Wang, and Y. H. Hu, 2016: Modeling the contribution of long-term urbanization to temperature increase in three extensive urban agglomerations in China. J. Geophys. Res. Atmos., 121, 16831697, https://doi.org/10.1002/2015JD024227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., and Coauthors, 2011: Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agric. For. Meteor., 151, 792802, https://doi.org/10.1016/j.agrformet.2011.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. H., J. X. Gao, S. H. Lv, Y. W. Han, and Y. H. Nie, 2011: Shifting farming-pastoral ecotone in China under climate and land use changes. J. Arid Environ., 75, 298308, https://doi.org/10.1016/j.jaridenv.2010.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M. H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern US water cycle. Geophys. Res. Lett., 40, 301306, https://doi.org/10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mao, D. H., Z. M. Wang, L. Luo, and C. Y. Ren, 2012: Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in northeast China. Int. J. Appl. Earth Obs. Geoinf., 18, 528536, https://doi.org/10.1016/j.jag.2011.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, 232256, https://doi.org/10.1029/2010GL042845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., 2007: A review of vegetation-atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr., 31, 261285, https://doi.org/10.1177/0309133307079055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, D., and Coauthors, 2016: The WACMOS-ET project - Part I: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci., 20, 803822, https://doi.org/10.5194/hess-20-803-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mintz, Y., 1984: The Sensitivity of Numerically Simulated Climates to Land Surface Conditions. Cambridge University Press, 79 pp.

  • Murray, S. J., P. N. Foster, and I. C. Prentice, 2012: Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J. Hydrol., 448–449, 1429, https://doi.org/10.1016/j.jhydrol.2012.02.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, S., S. Ghosh, R. Oglesby, A. Pathak, A. Chandrasekharan, and R. Ramsankaran, 2016: Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep., 6, 32177, https://doi.org/10.1038/srep32177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and P. P. Hesse, 2007: The significance of large-scale land cover change on the Australian palaeomonsoon. Quat. Sci. Rev., 26, 189200, https://doi.org/10.1016/j.quascirev.2006.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, J. F., and Coauthors, 2007: Global desertification: Building a science for dryland development. Science, 316, 847–851, https://doi.org/10.1126/science.1131634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockström, J. W., and Coauthors, 2009: Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc., 14, 32, https://doi.org/10.5751/ES-03180-140232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, T., J. A. Martinez, J. E. Herrera-Estrada, Y. Zhang, F. Dominguez, A. Berg, M. Ek, and E. F. Wood, 2019: Role of moisture transport and recycling in characterizing droughts: Perspectives from two recent U.S. droughts and the CFSv2 system. J. Hydrometeor., 20, 139154, https://doi.org/10.1175/JHM-D-18-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savenije, H. H. G., 1995: New definitions for moisture recycling and the relationship with land-use changes in the Sahel. J. Hydrol., 167, 5778, https://doi.org/10.1016/0022-1694(94)02632-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, and U. Beyerle, 1999: The soil-precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, https://doi.org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, R., B. Q. Zhang, T. S. Su, B. Long, L. Y. Cheng, Y. Y. Xue, and W. J. Yang, 2019: Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China. J. Geophys. Res. Atmos., 124, 11 78311 802, https://doi.org/10.1029/2019JD031295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmosphere moisture recycling: Role of advective convection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., R. W. A. Hutjes, and P. Kabat, 2012: The fate of evaporated water from the Ganges basin. J. Geophys. Res., 117, D01107, https://doi.org/10.1029/2011JD016221.

    • Search Google Scholar
    • Export Citation
  • Vervoort, R. W., P. J. J. F. Torfs, and F. F. Van Ogtrop, 2009: Irrigation increases moisture recycling and climate feedback. Aust. J. Water Resour., 13, 121134, https://doi.org/10.1080/13241583.2009.11465367.

    • Search Google Scholar
    • Export Citation
  • Wang, G., E. A. B. Eltahir, J. A. Foley, D. Pollard, and S. Levis, 2004: Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model. Climate Dyn., 22, 625637, https://doi.org/10.1007/s00382-004-0411-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. A., and C. A. Alo, 2012: Changes in precipitation seasonality in West Africa predicted by RegCM3 and the impact of dynamic vegetation feedback. Int. J. Geophys., 2012, 597205, https://doi.org/10.1155/2012/597205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. M. Feng, and Z. W. Yan, 2018: Impact of extensive urbanization on summertime rainfall in the Beijing region and the role of local precipitation recycling. J. Geophys. Res. Atmos., 123, 33233340, https://doi.org/10.1002/2017JD027725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. H., C. H. Lu, J. F. Fang, and Y. C. Shen, 2007: Implications for development of grain-for-green policy based on cropland suitability evaluation in desertification-affected north China. Land Use Policy, 24, 417424, https://doi.org/10.1016/j.landusepol.2006.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. J., B. Q. Zhang, X. F. Xu, J. Tian, and C. S. He, 2020: Regional water-energy cycle response to land use/cover change in the agro-pastoral ecotone, Northwest China. J. Hydrol., 580, 124246, https://doi.org/10.1016/j.jhydrol.2019.124246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang-Erlandsson, L., P. W. Fetzer, P. W. Keys, R. J. van ver Ent, H. H. G. Savenije, and L. J. Gordon, 2018: Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci., 22, 43114328, https://doi.org/10.5194/hess-22-4311-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang-Erlandsson, L., R. J. van ver Ent, L. J. Gordon, and H. H. G. Savenije, 2014: Contrasting roles of interception and transpiration in the hydrological cycle-Part 1: Temporal characteristics over land. Earth Syst. Dyn., 5, 441469, https://doi.org/10.5194/esd-5-441-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, B. C., Y. W. Xie, X. Jia, X. Y. Wang, H. J. He, and X. Y. Xue, 2018: Land use/land cover change and it’s impacts on diurnal temperature range over the agricultural pastoral ecotone of northern China. Land Degrad. Dev., 29, 30093020, https://doi.org/10.1002/ldr.3052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J. F., P. A. Dirmeyer, D. Wisser, M. G. Bosilovich, and D. M. Mocko, 2013: Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. J. Hydrometeor., 14, 275289, https://doi.org/10.1175/JHM-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J. F., H. Su, and Z. L. Yang, 2016: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467481, https://doi.org/10.1007/s00382-015-2593-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodcock, D. W., 1992: The rain on the plain: Are there vegetation-climate feedbacks? Global Planet. Change, 5, 191201, https://doi.org/10.1016/0921-8181(92)90010-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodward, C., J. Shulmeister, J. Larsen, G. E. Jacobsen, and A. Zawadzki, 2014: The hydrological legacy of deforestation on global wetlands. Science, 346, 844847, https://doi.org/10.1126/science.1260510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y. Y., B. Q. Zhang, C. S. He, and R. Shao, 2019: Detecting vegetation variations and main drivers over the agropastoral ecotone of northern China through the ensemble empirical mode decomposition method. Remote Sens., 11, 1860, https://doi.org/10.3390/rs11161860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D. W., C. Li, H. P. Hu, Z. D. Lei, S. H. Yang, T.