• Abbott, B. W., and et al. , 2016: Using multi-tracer inference to move beyond single catchment ecohydrology. Earth-Sci. Rev., 160, 1942, https://doi.org/10.1016/j.earscirev.2016.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aggarwal, P. K., O. A. Alduchov, K. O. Froehlich, L. J. Araguas-Araguas, N. C. Sturchio, and N. Kurita, 2012: Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophys. Res. Lett., 39, L11705, https://doi.org/10.1029/2012GL051937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aggarwal, P. K., U. Romatschke, L. Araguas-Araguas, D. Belachew, F. J. Longstaffe, P. Berg, C. Schumacher, and A. Funk, 2016: Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci., 9, 624629, https://doi.org/10.1038/ngeo2739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. T., J. W. Kirchner, and G. R. Goldsmith, 2018: Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinusoidal isoscapes. Geophys. Res., 45, 48594868, https://doi.org/10.1029/2018GL077458.

    • Search Google Scholar
    • Export Citation
  • Allen, S. T., S. Jasechko, W. R. Berghuijs, J. M. Welker, G. R. Goldsmith, and J. W. Kirchner, 2019: Global sinusoidal seasonality in precipitation isotopes. Hydrol. Earth Syst. Sci., 23, 34233436, https://doi.org/10.5194/hess-23-3423-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, A., E. Posmentier, and X. Feng, 2018: Patterns of evaporation and precipitation drive global isotopic changes in atmospheric moisture. Geophys. Res. Lett., 45, 70937101, https://doi.org/10.1029/2018GL078254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bárdossy, A., and G. G. S. Pegram, 2009: Copula based multisite model for daily precipitation simulation. Hydrol. Earth Syst. Sci., 13, 22992314, https://doi.org/10.5194/hess-13-2299-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benetti, M., G. Reverdin, C. Pierre, L. Merlivat, C. Risi, H. C. Steen-Larsen, and F. Vimeux, 2014: Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J. Geophys. Res. Atmos., 119, 583593, https://doi.org/10.1002/2013JD020535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoy, R., and P. Burlando, 2013: Stochastic downscaling of climate model precipitation outputs in orographically complex regions: 2. Downscaling methodology. Water Resour. Res., 50, 562579, https://doi.org/10.1002/wrcr.20443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., and S. P. Good, 2015: Incorporating water isotopes in hydrological and water resource investigations. Wiley Interdiscip. Rev.: Water, 2, 107119, https://doi.org/10.1002/wat2.1069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., Z. Cai, R. P. Fiorella, and A. L. Putman, 2019: Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. Earth Planet. Sci., 47, 453479, https://doi.org/10.1146/annurev-earth-053018-060220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, E., and et al. , 2019: The connected isotopic water cycle in the community Earth system model version 1. J. Adv. Model. Earth Syst., 11, 25472566, https://doi.org/10.1029/2019MS001663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, J. R., J. J. Gibson, S. J. Birks, M. H. Weber, K. D. Rodecap, and J. L. Stoddard, 2014: Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr., 59, 21502165, https://doi.org/10.4319/lo.2014.59.6.2150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celle-Jeanton, H., Y. Travi, and B. Blavoux, 2001: Isotopic typology of the precipitation in the western Mediterranean region at three different time scales. Geophys. Res. Lett., 28, 12151218, https://doi.org/10.1029/2000GL012407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clow, D. W., M. A. Mast, and J. O. Sickman, 2018: Linking transit times to catchment sensitivity to atmospheric deposition of acidity and nitrogen in mountains of the western United States. Hydrol. Processes, 32, 24562470, https://doi.org/10.1002/hyp.13183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cong, R., and M. Brady, 2012: The interdependence between rainfall and temperature: Copula analysis. Sci. World J., 2012, 111, https://doi.org/10.1100/2012/405675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., D. Noone, K. M. Cobb, J. W. Moerman, and B. L. Konecky, 2016: Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms. J. Geophys. Res. Atmos., 121, 32903303, https://doi.org/10.1002/2015JD023844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulibaly, P., Y. B. Dibike, and F. Anctil, 2005: Downscaling precipitation and temperature with temporal neutral networks. J. Hydrometeor., 6, 483496, https://doi.org/10.1175/JHM409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, H., 1961: Isotopic variations in meteoric waters. Science, 133, 17021703, https://doi.org/10.1126/science.133.3465.1702.

  • Craig, H., and L. I. Gordon, 1965: Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi, Ed., Consiglio Nazionale della Ricerche, 9–130.

  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993.

  • D’Onofrio, D., E. Palazzi, J. von Hardenberg, A. Provenzale, and S. Calmanti,2014: Stochastic rainfall downscaling of climate models. J. Hydrometeor., 15, 830843, https://doi.org/10.1175/JHM-D-13-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, A., B. H. Wilkinson, J. M. Welker, G. J. Bowen, and K. C. Lohmann, 2005: Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrol. Processes, 19, 41214146, https://doi.org/10.1002/hyp.5876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., and E. Foufoula-Georgiou, 2013: On variational downscaling, fusion, and assimilation of hydrometeorological states: A unified framework via regularization. Water Resour. Res., 49, 59445963, https://doi.org/10.1002/wrcr.20424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., A. M. Faiia, and E. S. Posmentier, 2009: Seasonality of isotopes in precipitation: A global perspective. J. Geophys. Res., 114, D08116, https://doi.org/10.1029/2008JD011279.

    • Search Google Scholar
    • Export Citation
  • Fröhlich, K., J. J. Gibson, and P. K. Aggarwal, 2002: Deuterium excess in precipitation and its climatological significance. Study of environmental change using isotope techniques, C&S Papers Series 13/P, International Atomic Energy Agency, 54–65.

  • Gallart, F., M. Valiente, P. Llorens, C. Cayuela, M. Sprenger, and J. Latron, 2020: Investigating young water fractions in a small Mediterranean mountain catchment: Both precipitation forcing and sampling frequency matter. Hydrol. Processes, 34, 36183634, https://doi.org/10.1002/hyp.13806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., Y. Xu, Q. Zhu, Z. Bai, and L. Liu, 2018: Stochastic generation of daily rainfall events: A single-site rainfall model with copula-based joint simulation of rainfall characteristics and classification and simulation of rainfall patterns. J. Hydrol., 564, 4158, https://doi.org/10.1016/j.jhydrol.2018.06.073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gat, J. R., 1996: Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci., 24, 225262, https://doi.org/10.1146/annurev.earth.24.1.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J. J., T. W. D. Edwards, S. J. Birks, N. A. St Amour, W. M. Buhay, P. McEachern, B. B. Wolfe, and D. L. Peters, 2005: Progress in isotope tracer hydrology in Canada. Hydrol. Processes, 19, 303327, https://doi.org/10.1002/hyp.5766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goncu, S., and E. Albek, 2016: Statistical downscaling of meteorological time series and climatic projections in a watershed in Turkey. Theor. Appl. Climatol., 126, 191211, https://doi.org/10.1007/s00704-015-1563-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. P., D. V. Mallia, J. C. Lin, and G. J. Bowen, 2014: Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of superstorm sandy. PLOS ONE, 9, e91117, https://doi.org/10.1371/journal.pone.0091117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. P., D. Noone, and G. Bowen, 2015: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175177, https://doi.org/10.1126/science.aaa5931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, A., E. P. Gerber, and P. H. Lauritzen, 2020: Numerical impacts on tracer transport: A proposed intercomparison test of atmospheric general circulation models. Quart. J. Roy. Meteor. Soc., 146, 39373964, https://doi.org/10.1002/qj.3881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyasi-Agyei, Y., 2011: Copula-based daily rainfall disaggregation model. Water Resour. Res., 47, W07535, https://doi.org/10.1029/2011WR010519.

  • Halder, J., S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal, 2015: The Global Network of Isotopes in Rivers (GNIR): Integration of water isotopes in watershed observation and riverine research. Hydrol. Earth Syst. Sci., 19, 34193431, https://doi.org/10.5194/hess-19-3419-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haslauer, C. P., P. Guthke, A. Bádossy, and E. A. Sudicky, 2012: Effects of non-Gaussian copula-based hydraulic conductivity fields on macrodispersion. Water Resour. Res., 48, W07507, https://doi.org/10.1029/2011WR011425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, G., J. Jouzel, and V. Masson, 2000: Stable water isotopes in atmospheric general circulation models. Hydrol. Processes, 14, 13851406, https://doi.org/10.1002/1099-1085(20000615)14:8<1385::AID-HYP989>3.0.CO;2-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., J. Zhang, Z. Zhang, S. Sun, and J. Yao, 2012: Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theor. Appl. Climatol., 108, 325343, https://doi.org/10.1007/s00704-011-0536-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IAEA, 2020: Global network of isotopes in precipitation. https://www.iaea.org/services/networks/gnip.

  • Ingraham, N. L., 1998: Isotopic variations in precipitation. Isotope Tracers in Catchment Hydrology, C. Kendall and J. J. McDonnell, Eds., Elsevier, 87–118, https://doi.org/10.1016/B978-0-444-81546-0.50010-0.

    • Crossref
    • Export Citation
  • Jacobs, S. R., E. Timbe, B. Weeser, M. C. Rufino, K. Butterbach-Bahl, and L. Breuer, 2018: Assessment of hydrological pathways in East African montane catchments under different land use. Hydrol. Earth Syst. Sci., 22, 49815000, https://doi.org/10.5194/hess-22-4981-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasechko, S., and R. Taylor, 2015: Intensive rainfall recharges tropical groundwaters. Environ. Res. Lett., 10, 124015, https://doi.org/10.1088/1748-9326/10/12/124015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasechko, S., J. W. Kirchner, J. M. Welker, and J. J. McDonnell, 2016: Substantial proportion of global streamflow less than three months old. Nat. Geosci., 9, 126129, https://doi.org/10.1038/ngeo2636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanner, L. C., N. H. Buenning, L. D. Stott, A. Timmermann, and D. Noone, 2014: The role of soil processes in δ18O. Global Biogeochem. Cycles, 28, 239252, https://doi.org/10.1002/2013GB004742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, C., and J. J. McDonnell, 2012: Isotope Tracers in Catchment Hydrology. Elsevier, 870 pp.

  • Khedun, C. P., A. K. Mishra, V. P. Singh, and J. R. Giardino, 2014: A copula-based precipitation forecasting model: Investigating the interdecadal modulation of ENSO’s impacts on monthly precipitation. Water Resour. Res., 50, 580600, https://doi.org/10.1002/2013WR013763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., 2016a: Aggregation in environmental systems—Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci., 20, 279297, https://doi.org/10.5194/hess-20-279-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., 2016b: Aggregation in environmental systems—Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity. Hydrol. Earth Syst. Sci., 20, 299328, https://doi.org/10.5194/hess-20-299-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konecky, B. L., D. C. Noone, and K. M. Cobb, 2019: The influence of competing hydroclimate processes on stable isotope ratios in tropical rainfall. Geophys. Res. Lett., 46, 16221633, https://doi.org/10.1029/2018GL080188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, P., D. P. Boyle, and F. Bäse, 2005: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 8997, https://doi.org/10.5194/adgeo-5-89-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, G., S. Khan, A. R. Ganguly, and M. L. Branstetter, 2007: Geospatial-temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America. Adv. Water Resour., 30, 24012423, https://doi.org/10.1016/j.advwatres.2007.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laux, P., S. Wagner, A. Wagner, J. Jacobeit, A. Bárdossy, and H. Kunstmann, 2009: Modelling daily precipitation features in the Volta basin of West Africa. Int. J. Climatol., 29, 937954, https://doi.org/10.1002/joc.1852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laux, P., S. Vogl, W. Qiu, H. R. Knoche, and H. Kunstmann, 2011: Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrol. Earth Syst. Sci., 15, 24012419, https://doi.org/10.5194/hess-15-2401-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. E., and I. Fung, 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, https://doi.org/10.1002/hyp.6637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, S. R., R. Krieg, C. Müller, M. Zink, K. Knöller, L. Samaniego, and R. Merz, 2018: Spatial patterns of water age: Using young water fractions to improve the characterization of transit times in contrasting catchments. Water Resour. Res., 54, 47674784, https://doi.org/10.1029/2017WR022216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGuire, K. J., and J. J. McDonnell, 2006: A review and evaluation of catchment transit time modeling. J. Hydrol., 330, 543563, https://doi.org/10.1016/j.jhydrol.2006.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moerman, J. W., K. M. Cobb, J. F. Adkins, H. Sodemann, B. Clark, and A. A. Tuen, 2013: Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth Planet. Sci. Lett., 369–370, 108109, https://doi.org/10.1016/j.epsl.2013.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, M., Z. Kuang, and P. N. Blossey, 2014: A moisture budget perspective of the amount effect. Geophys. Res. Lett., 41, 13291335, https://doi.org/10.1002/2013GL058302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, M., P. N. Blossey, A. Muhlbauer, and Z. Kuang, 2016: Microphysical controls on the isotopic composition of wintertime orographic precipitation. J. Geophys. Res., 121, 72357253, https://doi.org/10.1002/2015JD023763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nusbaumer, J., T. E. Wong, C. Bardeen, and D. Noone, 2017: Evaluating hydrological processes in the Community Atmosphere Model Version 5 (CAM5) using stable isotope ratios of water. J. Adv. Model. Earth Syst., 9, 949977, https://doi.org/10.1002/2016MS000839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., and et al. , 2020: GISS model E2.2: A climate model optimized for the middle atmosphere—2. Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, e2020JD033151, https://doi.org/10.1029/2020JD033151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Sodemann, 2014: What controls deuterium excess in global precipitation? Climate Past, 10, 771781, https://doi.org/10.5194/cp-10-771-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poduje, A. C. C., and U. Haberlandt, 2017: Short time step continuous rainfall modeling and simulation of extreme events. J. Hydrol., 552, 182197, https://doi.org/10.1016/j.jhydrol.2017.06.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remondi, F., J. W. Kircher, P. Burlando, and S. Fatichi, 2018: Water flux tracking with a distributed hydrologic model to quantify controls on the spatio-temporal variability of transit time distributions. Water Resour. Res., 54, 30813099, https://doi.org/10.1002/2017WR021689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, and F. Vimeux, 2008: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, https://doi.org/10.1029/2008JD009943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risi, C., and et al. , 2012: Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics. J. Geophys. Res., 117, D05304, https://doi.org/10.1029/2011JD016623.

    • Search Google Scholar
    • Export Citation
  • Rosa, D., J. F. Lamarque, and W. D. Collins, 2012: Global transport of passive tracers in conventional and superparameterized climate models: Evaluation of multi-scale methods. J. Adv. Model. Earth Syst., 4, M10003, https://doi.org/10.1029/2012MS000206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozanski, K., L. Araguás-Araguás, and R. Gonfiantini, 1993: Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, Geophys. Monogr., Vol. 78, Amer. Geophys. Union, 1–36, https://doi.org/10.1029/GM078p0001.

    • Crossref
    • Export Citation
  • Schneider, M., and F. Ramos, 2014: Transductive learning for multi-task copula processes. arXiv, 8 pp., https://arxiv.org/abs/1406.0304.

  • Schölzel, C., and P. Friederichs, 2008: Multivariate non-normally distributed random variables in climate research - Introduction to the copula approach. Nonlinear Processes Geophys., 15, 761772, https://doi.org/10.5194/npg-15-761-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sklar, A., 1959: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris, 8, 229231.

  • So, B., J. Kim, H. Kwon, and C. H. R. Lima, 2017: Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-duration-frequency curves over South Korea using multiple regional climate models. J. Hydrol., 553, 321337, https://doi.org/10.1016/j.jhydrol.2017.07.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, C., G. Wang, G. Liu, T. Mao, X. Sun, and X. Chen, 2017: Stable isotope variations of precipitation and streamflow reveal the young water fraction of a permafrost watershed. Hydrol. Processes, 31, 935947, https://doi.org/10.1002/hyp.11077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and et al. , 2019: The demographics of water: A review of water ages in the critical zone. Rev. Geophys., 57, 800834, https://doi.org/10.1029/2018RG000633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steen-Larsen, H. C., C. Risi, M. Werner, K. Yoshimura, and V. Masson-Delmotte, 2017: Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations. J. Geophys. Res. Atmos., 122, 246263, https://doi.org/10.1002/2016JD025443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tharammal, T., G. Bala, and D. Noone, 2017: Impact of deep convection on the isotopic amount effect in tropical precipitation. J. Geophys. Res. Atmos., 122, 15051523, https://doi.org/10.1002/2016JD025555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turnadge, C., and B. D. Smerdon, 2014: A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation. J. Hydrol., 519, 36743689, https://doi.org/10.1016/j.jhydrol.2014.10.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vachon, R. W., J. W. C. White, E. Gutmann, and J. M. Welker, 2007: Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation: A sensitivity study. Geophys. Res. Lett., 34, L21707, https://doi.org/10.1029/2007GL030547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Freyberg, J., S. T. Allen, S. Seeger, M. Weiler, and J. W. Kirchner, 2018: Sensitivity of young water fractions to hydroclimatic forcing and landscape properties across 22 Swiss catchments. Hydrol. Earth Syst. Sci., 22, 38413861, https://doi.org/10.5194/hess-22-3841-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, J. B., G. J. Bowen, T. E. Dawson, and K. P. Tu, 2010: Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping. Springer, 487 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiederhold, J. G., 2015: Metal stable isotope signatures as tracers in environmental geochemistry. Environ. Sci. Technol., 49, 26062624, https://doi.org/10.1021/es504683e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, B. H., and L. C. Ivany, 2002: Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts – A quantitative approach to the evaluation of incomplete data. Palaeogeogr. Palaeoclimatol. Palaeoecol., 185, 95114, https://doi.org/10.1016/S0031-0182(02)00279-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, T. E., J. Nusbaumer, and D. C. Noone, 2017: Evaluation of modeled land-atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 9, 9781001, https://doi.org/10.1002/2016MS000842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., A. Bárdossy, and H. J. Caspary, 2010: Downscaling daily precipitation time series using a combined circulation- and regression-based approach. Theor. Appl. Climatol., 102, 439454, https://doi.org/10.1007/s00704-010-0272-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 173 173 38
Full Text Views 31 31 7
PDF Downloads 41 41 14

A Statistical Method for Generating Temporally Downscaled Geochemical Tracers in Precipitation

View More View Less
  • 1 a Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon
  • | 2 b Water Resources Graduate Program, Oregon State University, Corvallis, Oregon
  • | 3 c Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, Nevada
  • | 4 d Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Sampling intervals of precipitation geochemistry measurements are often coarser than those required by fine-scale hydrometeorological models. This study presents a statistical method to temporally downscale geochemical tracer signals in precipitation so that they can be used in high-resolution, tracer-enabled applications. In this method, we separated the deterministic component of the time series and the remaining daily stochastic component, which was approximated by a conditional multivariate Gaussian distribution. Specifically, statistics of the stochastic component could be explained from coarser data using a newly identified power-law decay function, which relates data aggregation intervals to changes in tracer concentration variance and correlations with precipitation amounts. These statistics were used within a copula framework to generate synthetic tracer values from the deterministic and stochastic time series components based on daily precipitation amounts. The method was evaluated at 27 sites located worldwide using daily precipitation isotope ratios, which were aggregated in time to provide low-resolution testing datasets with known daily values. At each site, the downscaling method was applied on weekly, biweekly, and monthly aggregated series to yield an ensemble of daily tracer realizations. Daily tracer concentrations downscaled from a biweekly series had average (±standard deviation) absolute errors of 1.69‰ (1.61‰) for δ2H and 0.23‰ (0.24‰) for δ18O relative to observations. The results suggest coarsely sampled precipitation tracers can be accurately downscaled to daily values. This method may be extended to other geochemical tracers in order to generate downscaled datasets needed to drive complex, fine-scale models of hydrometeorological processes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0142.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine Finkenbiner, c.finkenbiner@gmail.com

Abstract

Sampling intervals of precipitation geochemistry measurements are often coarser than those required by fine-scale hydrometeorological models. This study presents a statistical method to temporally downscale geochemical tracer signals in precipitation so that they can be used in high-resolution, tracer-enabled applications. In this method, we separated the deterministic component of the time series and the remaining daily stochastic component, which was approximated by a conditional multivariate Gaussian distribution. Specifically, statistics of the stochastic component could be explained from coarser data using a newly identified power-law decay function, which relates data aggregation intervals to changes in tracer concentration variance and correlations with precipitation amounts. These statistics were used within a copula framework to generate synthetic tracer values from the deterministic and stochastic time series components based on daily precipitation amounts. The method was evaluated at 27 sites located worldwide using daily precipitation isotope ratios, which were aggregated in time to provide low-resolution testing datasets with known daily values. At each site, the downscaling method was applied on weekly, biweekly, and monthly aggregated series to yield an ensemble of daily tracer realizations. Daily tracer concentrations downscaled from a biweekly series had average (±standard deviation) absolute errors of 1.69‰ (1.61‰) for δ2H and 0.23‰ (0.24‰) for δ18O relative to observations. The results suggest coarsely sampled precipitation tracers can be accurately downscaled to daily values. This method may be extended to other geochemical tracers in order to generate downscaled datasets needed to drive complex, fine-scale models of hydrometeorological processes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0142.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine Finkenbiner, c.finkenbiner@gmail.com

Supplementary Materials

    • Supplemental Materials (ZIP 1.03 MB)
Save