• Akella, S., R. Todling, and M. Suarez, 2017: Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system. Quart. J. Roy. Meteor. Soc., 143, 10321046, https://doi.org/10.1002/qj.2988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2017: Atmospheric river. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Atmospheric_river.

  • Archer, C. L., B. A. Colle, D. L. Veron, F. Veron, and M. J. Sienkiewicz, 2016: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast. J. Geophys. Res. Atmos., 121, 88698885, https://doi.org/10.1002/2016JD024896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., 1999: The effects of atmospheric stability on coastal wind climates. Meteor. Appl., 6, 3947, https://doi.org/10.1017/S1350482799000961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callahan, P. S., and T. Lungu, Eds., 2006: QuikSCAT science data product user’s manual, version 3.0. JPL/NASA Doc. D-18053–Rev A, 85 pp., https://podaac-tools.jpl.nasa.gov/drive/files/allData/quikscat/L2B12/docs/QSUG_v3.pdf.

  • Chahine, M. T., and et al. , 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, A., A. Michaelis, S. Iacobellis, F. M. Ralph, and L. Delle Monache, 2021: Atmospheric river sectors: Definition and characteristics observed using dropsondes from 2014–20 CalWater and AR Recon. Mon. Wea. Rev., 149, 623644, https://doi.org/10.1175/MWR-D-20-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California – A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/J.1752-1688.2011.00546.X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakarla, M., and et al. , 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, https://doi.org/10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. Molotch, D. Waliser, E. Fetzer, and P. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, https://doi.org/10.1002/wrcr.20537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2018: An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeor., 19, 321337, https://doi.org/10.1175/JHM-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., and G. Villarini, 2016: On the relationship between atmospheric rivers and high sea water levels along the U.S. West Coast. Geophys. Res. Lett., 43, 88158822, https://doi.org/10.1002/2016GL070086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingston, D. G., D. A. Lavers, and D. M. Hannah, 2016: Floods in the southern Alps of New Zealand: The importance of atmospheric rivers. Hydrol. Processes, 30, 50635070, https://doi.org/10.1002/hyp.10982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., P. J. Minnett, M. Szczodrak, N. R. Nalli, and V. R. Morris, 2020: Accuracy assessment of MERRA-2 and ERA-Interim sea surface temperature, air temperature, and humidity profiles over the Atlantic Ocean using AEROSE measurements. J. Climate, 33, 68896909, https://doi.org/10.1175/JCLI-D-19-0955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., and et al. , 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. Series on Global Modeling and Data Assimilation Rep. NASA/TM-2016-104606, Vol. 46, 64 pp., https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf.

  • Mohan, M., and T. A. Siddiqui, 1998: Analysis of various schemes for the estimation of atmospheric stability classification. Atmos. Environ., 32, 37753781, https://doi.org/10.1016/S1352-2310(98)00109-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10 38710 395, https://doi.org/10.1002/2017GL074882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickett, M. H., W. Tang, L. K. Rosenfeld, and C. H. Wash, 2003: QuikSCAT satellite comparisons with nearshore buoy wind data off the U.S. west coast. J. Atmos. Oceanic Technol., 20, 18691879, https://doi.org/10.1175/1520-0426(2003)020<1869:QSCWNB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. M. Trigo, M. L. R. Liberato, and R. Tomé, 2015: Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor., 16, 579597, https://doi.org/10.1175/JHM-D-14-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., and W. N. Shaw, 1920: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London, 97A, 354373, https://doi.org/10.1098/RSPA.1920.0039.

    • Search Google Scholar
    • Export Citation
  • Ridder, N., H. de Vries, and S. Drijfhout, 2018: The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast. Proc. Roy. Soc., A18, 33113326, https://doi.org/10.1098/RSPA.1920.0039.

    • Search Google Scholar
    • Export Citation
  • Rondanelli, R., B. Hatchett, J. Rutllant, D. Bozkurt, and R. Garreaud, 2019: Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett., 46, 34823491, https://doi.org/10.1029/2018GL081475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and et al. , 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/GMD-11-2455-2018.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 2006: The atmospheric boundary layer. Atmospheric Science: An Introductory Survey, J. M. Wallace and P. V. Hobbs, Eds., Academic Press, 375–417, https://doi.org/10.1016/B978-0-12-732951-2.50014-4.

    • Crossref
    • Export Citation
  • Susskind, J., J. M. Blaisdell, L. Iredell, and F. Keita, 2010: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS science team version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907, https://doi.org/10.1109/TGRS.2010.2070508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, W., M. Spencer, C. Wu, C. Winn, and K. Kellogg, 2000: SeaWinds on QuikSCAT: Sensor description and mission overview. IEEE 2000 Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1021–1023, https://doi.org/10.1109/IGARSS.2000.858008.

    • Crossref
    • Export Citation
  • Viale, M., and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, https://doi.org/10.1175/2010JHM1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph, 2018: Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeor., 19, 16711687, https://doi.org/10.1175/JHM-D-18-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179183, https://doi.org/10.1038/NGEO2894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Introduction and overview. Atmospheric Science: An Introductory Survey, J. M. Wallace and P. V. Hobbs, Eds., Academic Press, 1–23, https://doi.org/10.1016/B978-0-12-732951-2.50006-5.

    • Crossref
    • Export Citation
  • Wong, S., E. J. Fetzer, M. Schreier, G. Manipon, E. F. Fishbein, B. H. Kahn, Q. Yue, and F. W. Irion, 2015: Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity. J. Geophys. Res. Atmos., 120, 18801901, https://doi.org/10.1002/2014JD022440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M., and A. G. Kelessis, 1991: The dependence of the bulk Richardson number on stability in the surface layer. Bound.-Layer Meteor., 57, 407414, https://doi.org/10.1007/BF00120057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 75 75 36
Full Text Views 42 42 17
PDF Downloads 50 50 24

Extreme Surface Winds during Landfalling Atmospheric Rivers: The Modulating Role of Near-Surface Stability

View More View Less
  • 1 a University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 b College of Natural and Social Sciences, California State University, Los Angeles, Los Angeles, California
  • | 3 c Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 4 d Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
  • | 5 e Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 6 f National Institute of Meteorological Sciences, Korea Meteorological Administration, Seogwipo-si, Jeju-do, South Korea
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Atmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT, and AIRS satellite observations is used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), along with integrated water vapor transport (IVT), is analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22%–38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36%–52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% as compared with 52% explained variance for U.S. West Coast). Use of an alternate static stability measure—the bulk Richardson number—yields a similar explained variance (47%). Last, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3% and 14.7% during weak and strong IVT, respectively) than in stable conditions (0.58% and 6.15%).

Corresponding author: Terence Pagano, tpagano@wisc.edu

Abstract

Atmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT, and AIRS satellite observations is used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), along with integrated water vapor transport (IVT), is analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22%–38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36%–52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% as compared with 52% explained variance for U.S. West Coast). Use of an alternate static stability measure—the bulk Richardson number—yields a similar explained variance (47%). Last, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3% and 14.7% during weak and strong IVT, respectively) than in stable conditions (0.58% and 6.15%).

Corresponding author: Terence Pagano, tpagano@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.76 MB)
Save