• Biraud, S., M. Fischer, S. Chan, and M. Torn, 2003: FLUXNET2015 US-ARM ARM Southern Great Plains site-Lamont. Lawrence Berkeley National Laboratory, accessed 2 February 2020, https://doi.org/10.18140/FLX/1440066.

    • Crossref
    • Export Citation
  • Delworth, T., and S. Manaba, 1993: Climate variability and land-surface processes. Adv. Water Resour., 16, 320, https://doi.org/10.1016/0309-1708(93)90026-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denissen, J. M. C., A. J. Teuling, M. Reichstein, and R. Orth, 2020: Critical soil moisture derived from satellite observations over Europe. J. Geophys. Res. Atmos., 125, e2019JD031672, https://doi.org/10.1029/2019JD031672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2013: Characteristics of the water cycle and land-atmosphere interactions from a comprehensive reforecast and reanalysis data set: CFSv2. Climate Dyn., 41, 10831097, https://doi.org/10.1007/s00382-013-1866-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, https://doi.org/10.1175/JHM532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, https://doi.org/10.1175/2008JHM1016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013a: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, https://doi.org/10.1175/JHM-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., S. Kumar, M. J. Fennessy, E. L. Altshuler, T. Delsole, Z. Guo, B. A. Cash, and D. Straus, 2013b: Model estimates of land-driven predictability in a changing climate from CCSM4. J. Climate, 26, 84958512, https://doi.org/10.1175/JCLI-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, https://doi.org/10.1002/2013GL058826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and et al. , 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeor., 17, 10491067, https://doi.org/10.1175/JHM-D-15-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and et al. , 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and B. P. Guillod, 2015: Data length requirements for observational estimates of land–atmosphere coupling strength. J. Hydrometeor., 16, 16151635, https://doi.org/10.1175/JHM-D-14-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, https://doi.org/10.1175/JHM-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. P., G. W. Moore, and D. G. Miralles, 2017: A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol., 1, 18831888, https://doi.org/10.1038/s41559-017-0371-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., W. A. Dorigo, W. Crow, and W. Wagner, 2017: Triple collocation-based merging of satellite soil moisture retrievals. IEEE Trans. Geosci. Remote Sens., 55, 67806792, https://doi.org/10.1109/TGRS.2017.2734070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., A. J. Pitman, and V. Haverd, 2016: Evaluating land–atmosphere coupling using a resistance pathway framework. J. Hydrometeor., 17, 26152630, https://doi.org/10.1175/JHM-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30, 1241, https://doi.org/10.1029/2002GL016571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., P. A. Dirmeyer, C. D. Peters-Lidard, R. Bindlish, and J. Bolten, 2018: Information theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ., 204, 392400, https://doi.org/10.1016/j.rse.2017.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, V., and et al. , 2019: The GDAP integrated product. GEWEX News, Vol. 29, No. 3, International GEWEX Project Office, Silver Spring, MD, 3–6, https://www.gewex.org/gewexcontent/files_mf/1568309644Aug2019.pdf.

  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880, https://doi.org/10.1175/JHM596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H., J. Zeng, N. Chen, X. Zhang, M. H. Cosh, and W. Wang, 2019: Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ., 231, 111215, https://doi.org/10.1016/j.rse.2019.111215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and et al. , 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., W. Waegeman, W. A. Dorigo, N. E. C. Verhoest, and D. G. Miralles, 2018: Terrestrial evaporation response to modes of climate variability. npj Climate Atmos. Sci., 1, 43, https://doi.org/10.1038/s41612-018-0053-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood, 2015: The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev., 8, 68096866, https://doi.org/10.5194/gmdd-8-6809-2015.

    • Search Google Scholar
    • Export Citation
  • McKenney, M. S., and N. J. Rosenberg, 1993: Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. For. Meteor., 64, 81110, https://doi.org/10.1016/0168-1923(93)90095-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. J. Hydrometeor., 13, 10101022, https://doi.org/10.1175/JHM-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, D., and Coauthors, 2016: The WACMOS-ET project - Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci., 20, 803822, https://doi.org/10.5194/hess-20-803-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2017: A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Amer. Water Resour. Assoc., 53, 822838, https://doi.org/10.1111/1752-1688.12538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and et al. , 2016: The WACMOS-ET project-Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci., 20, 823842, https://doi.org/10.5194/hess-20-823-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, H., B. P. Guillod, L. Gudmundsson, and S. I. Seneviratne, 2019: Soil moisture effects on afternoon precipitation occurrence in current climate models. Geophys. Res. Lett., 46, 18611869, https://doi.org/10.1029/2018GL080879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and et al. , 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and et al. , 2017: Using ARM observations to evaluate climate model simulations of land-atmosphere coupling on the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 122, 11 52411 548, https://doi.org/10.1002/2017JD027141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., J. Roundy, and P. A. Dirmeyer, 2015: Quantifying the land–atmosphere coupling behavior in modern reanalysis products over the U.S. southern Great Plains. J. Climate, 28, 58135829, https://doi.org/10.1175/JCLI-D-14-00680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and et al. , 2018: Land–atmosphere interactions the LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwingshackl, C., M. Hirschi, and S. I. Seneviratne, 2017: Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. J. Climate, 30, 71057124, https://doi.org/10.1175/JCLI-D-16-0727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siemann, A. L., N. Chaney, and E. F. Wood, 2018: Development and validation of a long-term, global, terrestrial sensible heat flux dataset. J. Climate, 31, 60736095, https://doi.org/10.1175/JCLI-D-17-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, S., J. Zscheischler, M. D. Mahecha, R. Orth, M. Reichstein, M. Vogel, and S. I. Seneviratne, 2017: Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics. Earth Syst. Dyn., 8, 387403, https://doi.org/10.5194/esd-8-387-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: The NASA/GEWEX Surface Radiation Budget Release 3.0: 24.5-year dataset. GEWEX News, Vol. 21, No. 1, International GEWEX Project Office, Silver Spring, MD, 10–12, http://www.gewex.org/gewex-content/files_mf/1432209318Feb2011.pdf.

  • Vinnikov, K. Y., and I. B. Yeserkepova, 1991: Soil moisture: Empirical data and model results. J. Climate, 4, 6679, https://doi.org/10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and et al. , 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., S. Hahn, A. Gruber, and W. Dorigo, 2012: Identification of soil moisture retrieval errors: Learning from the comparison of SMOS and ASCAT. 2012 Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, 3795–3798, https://doi.org/10.1109/IGARSS.2012.6350586.

    • Crossref
    • Export Citation
  • Wang, Y., P. Leng, J. Peng, P. Marzahn, and R. Ludwig, 2021: Global assessments of two blended microwave soil moisture products CCI and SMOPS with in-situ measurements and reanalysis data. Int. J. Appl. Earth Obs. Geoinf., 94, 102234, https://doi.org/10.1016/j.jag.2020.102234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and P. A. Dirmeyer, 2012: Dissecting soil moisture-precipitation coupling. Geophys. Res. Lett., 39, L19711, https://doi.org/10.1029/2012GL053038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., Y. Lu, L. M. Kueppers, W. J. Riley, S. C. Biraud, J. E. Bagley, and M. S. Torn, 2016: Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 121, 12 12512 144, https://doi.org/10.1002/2016JD025223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, D., and X. Yuan, 2018: Multiscale land–atmosphere coupling and its application in assessing subseasonal forecasts over East Asia. J. Hydrometeor., 19, 745760, https://doi.org/10.1175/JHM-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. C. Wang, and J. Wei, 2008: Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, https://doi.org/10.1029/2008JD009807.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 157 157 31
Full Text Views 62 62 22
PDF Downloads 82 82 27

Validating the Land–Atmosphere Coupling Behavior in Weather and Climate Models Using Observationally Based Global Products

View More View Less
  • 1 a Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

The interactions between land and atmosphere (with terrestrial and atmospheric coupling segments) play a significant role in weather and climate. A predominant segment of land–atmosphere (LA) feedbacks is the coupling between soil moisture (SM) and surface heat fluxes, the terrestrial coupling leg. The lack of high-quality, long-term, globally distributed observations, however, has hindered a robust, realistic identification of the terrestrial leg strength on a global scale. This exploratory study provides insight into how SM signals are translated into surface flux signals through the construction of a global depiction of the terrestrial leg from several recently developed global, gridded, observationally and satellite-based datasets. The feasibility of producing global gridded estimates of LA coupling metrics is explored. Five weather and climate models used for subseasonal to seasonal forecasting are confronted with the observational estimates to discern discrepancies that may affect their ability to predict phenomena related to LA feedbacks, such as drought or heat waves. The terrestrial feedback leg from observations corroborates the “hot spots” of LA coupling found in modeling studies, but the variances in daily time series of surface fluxes differ markedly. Better agreement and generally higher confidence are seen in metrics using latent heat flux than sensible heat flux. Observational metrics allow for clear stratification of model fidelity that is consistent across seasons, despite observational uncertainty. The results highlight the impact of SM on partitioning available surface energy and illustrate the potential of global observationally based datasets for the assessment of such relationships in weather and climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0183.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Abedeh Abdolghafoorian, aabdolgh@gmu.edu

Abstract

The interactions between land and atmosphere (with terrestrial and atmospheric coupling segments) play a significant role in weather and climate. A predominant segment of land–atmosphere (LA) feedbacks is the coupling between soil moisture (SM) and surface heat fluxes, the terrestrial coupling leg. The lack of high-quality, long-term, globally distributed observations, however, has hindered a robust, realistic identification of the terrestrial leg strength on a global scale. This exploratory study provides insight into how SM signals are translated into surface flux signals through the construction of a global depiction of the terrestrial leg from several recently developed global, gridded, observationally and satellite-based datasets. The feasibility of producing global gridded estimates of LA coupling metrics is explored. Five weather and climate models used for subseasonal to seasonal forecasting are confronted with the observational estimates to discern discrepancies that may affect their ability to predict phenomena related to LA feedbacks, such as drought or heat waves. The terrestrial feedback leg from observations corroborates the “hot spots” of LA coupling found in modeling studies, but the variances in daily time series of surface fluxes differ markedly. Better agreement and generally higher confidence are seen in metrics using latent heat flux than sensible heat flux. Observational metrics allow for clear stratification of model fidelity that is consistent across seasons, despite observational uncertainty. The results highlight the impact of SM on partitioning available surface energy and illustrate the potential of global observationally based datasets for the assessment of such relationships in weather and climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0183.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Abedeh Abdolghafoorian, aabdolgh@gmu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.10 MB)
Save