• Abatzoglou, J. T., and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, https://doi.org/10.1002/joc.2312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Addor, N., S. Jaun, F. Fundel, and M. Zappa, 2011: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): Skill, case studies and scenarios. Hydrol. Earth Syst. Sci., 15, 23272347, https://doi.org/10.5194/hess-15-2327-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 75287536, https://doi.org/10.1002/2017GL074434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, S. A., A. W. Wood, and B. Rajagopalan, 2019: Developing subseasonal to seasonal climate forecast products for hydrology and water management. J. Amer. Water Resour. Assoc., 55, 10241037, https://doi.org/10.1111/1752-1688.12746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, N. A., G. Villarini, M. A. Nayak, and K. White, 2017: Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res., 53, 257269, https://doi.org/10.1002/2016WR019064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartholmes, J. C., J. Thielen, M. H. Ramos, and S. Gentilini, 2009: The European Flood Alert System EFAS-Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci., 13, 141153, https://doi.org/10.5194/hess-13-141-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, https://doi.org/10.1016/j.agrformet.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., A. Mehran, F. M. Ralph, and D. P. Lettenmaier, 2019: The role of hydrological initial conditions on atmospheric river floods in the Russian River basin. J. Hydrometeor., 20, 16671686, https://doi.org/10.1175/JHM-D-19-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., A. Gershunov, T. Shulgina, F. M. Ralph, N. Sun, and D. P. Lettenmaier, 2020: Floods due to atmospheric rivers along the U.S. West Coast: The role of antecedent soil moisture in a warming climate. J. Hydrometeor., 21, 18271845, https://doi.org/10.1175/JHM-D-19-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, G. N., 1985: Extended streamflow forecasting using NWSRFS. Water Resour. Plann. Manage., 111, 157170, https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. M. Ralph, and F. Vitart, 2018: Global assessment of atmospheric river prediction skill. J. Hydrometeor., 19, 409426, https://doi.org/10.1175/JHM-D-17-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. E. Waliser, B. Guan, F. M. Ralph, and F. Vitart, 2019a: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., 52, 30393060, https://doi.org/10.1007/s00382-018-4309-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., and et al. , 2019b: Experimental subseasonal-to-seasonal (S2S) forecasting of atmospheric rivers over the western United States. J. Geophys. Res. Atmos., 124, 11 24211 265, https://doi.org/10.1029/2019JD031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., F. Ralph, T. Das, P. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and et al. , 2019: Precipitation regime change in western North America: The role of atmospheric rivers. Sci. Rep., 9, 9944, https://doi.org/10.1038/s41598-019-46169-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., D. E. Waliser, A. Goodman, M. J. DeFlorio, L. Delle Monache, and A. Molod, 2020: Subseasonal-to-seasonal hindcast skill assessment of ridging events related to drought over the western United States. J. Geophys. Res. Atmos., 125, e2020JD033655, https://doi.org/10.1029/2020JD033655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., Y. Zhu, E. Sinsky, W. Li, X. Zhou, D. Hou, C. Melhauser, and R. Wobus, 2019: Systematic error analysis and calibration of 2-m temperature for the NCEP GEFS reforecast of the Subseasonal Experiment (SubX) Project. Wea. Forecasting, 34, 361376, https://doi.org/10.1175/WAF-D-18-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, J. A., and B. J. McNeil, 1982: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol., 143, 2936, https://doi.org/10.1148/radiology.143.1.7063747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2016: Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J. Geophys. Res. Atmos., 121, 12 69012 701, https://doi.org/10.1002/2016JD024932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoben, W. J. M., J. E. Freer, and R. A. Woods, 2019: Technical note: Inherent benchmark or not? Comparing Nash Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci., 23, 43234331, https://doi.org/10.5194/hess-23-4323-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoben, W. J. M., J. E. Freer, M. C. Peel, K. J. A. Fowler, and R. A. Woods, 2020: A brief analysis of conceptual model structure uncertainty using 36 models and 559 catchments. Water Resour. Res., 56, e2019WR025975, https://doi.org/10.1029/2019WR025975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949–2015. Geophys. Res. Lett., 44, 11 45611 462, https://doi.org/10.1002/2017GL075399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, M., T. Ouarda, and B. Bobee, 1999: Towards operational guidelines for over-threshold modeling. J. Hydrol., 225, 103117, https://doi.org/10.1016/S0022-1694(99)00167-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., L. Luo, E. F. Wood, and J. Schaake, 2009: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J. Geophys. Res., 114, D04114, https://doi.org/10.1029/2008JD010969.

    • Search Google Scholar
    • Export Citation
  • Li, W., J. Chen, L. Li, H. Chen, B. Liu, C. Xu, and X. Li, 2019: Evaluation and bias correction of S2S precipitation for hydrological extremes. J. Hydrometeor., 20, 18871906, https://doi.org/10.1175/JHM-D-19-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liechti, K., L. Panziera, U. Germann, and M. Zappa, 2013: The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps. Hydrol. Earth Syst. Sci., 17, 38533869, https://doi.org/10.5194/hess-17-3853-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., N. Gagnon, S. Beauregard, R. Muncaster, M. Markovic, B. Denis, and M. Charron, 2016: GEPS-based monthly prediction at the Canadian Meteorological Centre. Mon. Wea. Rev., 144, 48674883, https://doi.org/10.1175/MWR-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., R. Mo, F. Vitart, and C. Stan, 2018: Eastern Canada flooding 2017 and its subseasonal predictions. Atmos.–Ocean, 57, 195207, https://doi.org/10.1080/07055900.2018.1547679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahanama, S. P. P., R. D. Koster, R. H. Reichle, and L. Zubair, 2008: The role of soil moisture initialization in subseasonal and seasonal streamflow prediction: A case study in Sri Lanka. Adv. Water Resour., 31, 13331343, https://doi.org/10.1016/j.advwatres.2008.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and et al. , 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and et al. , 2020: Current and emerging developments in subseasonal to decadal prediction. Bull. Amer. Meteor. Soc., 101, E869E896, https://doi.org/10.1175/BAMS-D-19-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. J. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. Tech. Memo. NASA/TM-2012-104606, 115 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011790.pdf.

  • Monhart, S., C. Spirig, J. Bhend, K. Bogner, C. Schär, and M. A. Liniger, 2018: Skill of subseasonal forecasts in Europe: Effect of bias correction and downscaling using surface observations. J. Geophys. Res. Atmos., 123, 79998016, https://doi.org/10.1029/2017JD027923.

    • Search Google Scholar
    • Export Citation
  • Monhart, S., M. Zappa, C. Spirig, C. Schär, and K. Bogner, 2019: Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: Benefits of the NWP approach. Hydrol. Earth Syst. Sci., 23, 493513, https://doi.org/10.5194/hess-23-493-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden-Julian oscillation and quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/s41612-017-0008-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nardi, K. M., E. A. Barnes, and F. M. Ralph, 2018: Assessment of numerical weather prediction model reforecasts of the occurrence, intensity, and location of atmospheric rivers along the West Coast of North America. Mon. Wea. Rev., 146, 33433362, https://doi.org/10.1175/MWR-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, B., K. Hsu, A. AghaKouchak, S. Sorooshian, and W. Higgins, 2019: Precipitation prediction skill for the West Coast United States: From short to extended range. J. Climate, 32, 161182, https://doi.org/10.1175/JCLI-D-18-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and et al. , 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using Localized Constructed Analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. Wick, S. Gutman, M. Dettinger, D. Cayan, and A. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. D. Dettinger, M. L. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A Scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Q. Liu, 2014: Observation-corrected precipitation estimates in GEOS-5. Tech. Memo. NASA/TM-2014-104606, 18 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000725.pdf.

  • Rienecker, M. M., and et al. , 2008: The GEOS-5 Data assimilation system-documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, 97 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf.

  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schick, S., O. Rössler, and R. Weingartner, 2019: An evaluation of model output statistics for subseasonal streamflow forecasting in European catchments. J. Hydrometeor., 20, 13991416, https://doi.org/10.1175/JHM-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and D. P. Lettenmaier, 2011: Seasonal hydrologic prediction in the United States: Understanding the role of initial hydrologic conditions and seasonal climate forecast skill. Hydrol. Earth Syst. Sci., 15, 35293538, https://doi.org/10.5194/hess-15-3529-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., N. Voisin, and D. P. Lettenmaier, 2012: Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill. Hydrol. Earth Syst. Sci., 16, 28252838, https://doi.org/10.5194/hess-16-2825-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, L., Q. Cao, M. Xiao, D.M. Mocko, M. Barlage, D. Li, C.D. Peters-Lidard, and D.P. Lettenmaier, 2021: Drought variability over the conterminous United States for the past century. J. Hydrometeor., 22, 1153–1168, https://doi.org/10.1175/JHM-D-20-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., R. Bleck, S. G. Benjamin, B. W. Green, and G. A. Grell, 2018a: Subseasonal forecasting with an icosahedral, vertically quasi-Lagrangian coupled model. Part I: Model overview and evaluation of systematic errors. Mon. Wea. Rev., 146, 16011617, https://doi.org/10.1175/MWR-D-18-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., B. W. Green, R. Bleck, and S. G. Benjamin, 2018b: Subseasonal forecasting with an icosahedral, vertically quasi-Lagrangian coupled model. Part II: Probabilistic and deterministic forecast skill. Mon. Wea. Rev., 146, 16191639, https://doi.org/10.1175/MWR-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USWRC, 1982: Guidelines for determining flood flow frequency. Bulletin 17B of the Hydrology Subcommittee, 183 pp., https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf.

  • Vitart, F., and et al. , 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135, 118124, https://doi.org/10.1175/MWR3280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., R. Mehrotra, A. Sharma, and R. Srikanthan, 2012: Continuous rainfall simulation: 1—A regionalised sub-daily disaggregation approach. Water Resour. Res., 48, W01535, https://doi.org/10.1029/2011WR010489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Wood, A. W., and D. P. Lettenmaier, 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett., 35, L14401, https://doi.org/10.1029/2008GL034648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., A. Kumar, and D. P. Lettenmaier, 2005: A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. J. Geophys. Res., 110, D04105, https://doi.org/10.1029/2004JD004508.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: A comparison of perturbations from an ensemble transform and an ensemble Kalman filter for the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 20572074, https://doi.org/10.1175/WAF-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and R. Wobus, 2017: Performance of the new NCEP Global Ensemble Forecast System in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and et al. , 2018: Toward the improvement of subseasonal prediction in the national centers for environmental prediction global ensemble forecast system. J. Geophys. Res., 123, 67326745, https://doi.org/10.1029/2018JD028506.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 116 116 51
Full Text Views 77 77 35
PDF Downloads 68 68 30

Evaluation of the Subseasonal Forecast Skill of Floods Associated with Atmospheric Rivers in Coastal Western U.S. Watersheds

View More View Less
  • 1 a Department of Geography, University of California, Los Angeles, Los Angeles, California
  • | 2 b University of California, Santa Barbara, Santa Barbara, California
  • | 3 c Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Atmospheric rivers (ARs) are responsible for up to 90% of major flood events along the U.S. West Coast. The time scale of subseasonal forecasting (from 2 weeks to 1 month) is a critical lead time for proactive mitigation of flood disasters. The NOAA Climate Testbed Subseasonal Experiment (SubX) is a research-to-operations project with almost immediate availability of forecasts. It has produced a reforecast database that facilitates evaluation of flood forecasts at these subseasonal lead times. Here, we examine the SubX-driven forecast skill of AR-related flooding out to 4-week lead using the Distributed Hydrology Soil Vegetation Model (DHSVM), with particular attention to the role of antecedent soil moisture (ASM), which modulates the relationship between meteorological and hydrological forecast skill. We study three watersheds along a transect of the U.S. West Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We find that the SubX-driven flood forecast skill drops quickly after week 1, during which there is relatively high deterministic forecast skill. We find some probabilistic forecast skill relative to climatology as well as ensemble streamflow prediction (ESP) in week 2, but minimal skill in weeks 3–4, especially for annual maximum floods, notwithstanding some probabilistic skill for smaller floods in week 3. Using ESP and reverse-ESP experiments to consider the relative influence of ASM and SubX reforecast skill, we find that ASM dominates probabilistic forecast skill only for small flood events at week 1, while SubX reforecast skill dominates for large flood events at all lead times.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0219.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dennis P. Lettenmaier, dlettenm@ucla.edu

Abstract

Atmospheric rivers (ARs) are responsible for up to 90% of major flood events along the U.S. West Coast. The time scale of subseasonal forecasting (from 2 weeks to 1 month) is a critical lead time for proactive mitigation of flood disasters. The NOAA Climate Testbed Subseasonal Experiment (SubX) is a research-to-operations project with almost immediate availability of forecasts. It has produced a reforecast database that facilitates evaluation of flood forecasts at these subseasonal lead times. Here, we examine the SubX-driven forecast skill of AR-related flooding out to 4-week lead using the Distributed Hydrology Soil Vegetation Model (DHSVM), with particular attention to the role of antecedent soil moisture (ASM), which modulates the relationship between meteorological and hydrological forecast skill. We study three watersheds along a transect of the U.S. West Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We find that the SubX-driven flood forecast skill drops quickly after week 1, during which there is relatively high deterministic forecast skill. We find some probabilistic forecast skill relative to climatology as well as ensemble streamflow prediction (ESP) in week 2, but minimal skill in weeks 3–4, especially for annual maximum floods, notwithstanding some probabilistic skill for smaller floods in week 3. Using ESP and reverse-ESP experiments to consider the relative influence of ASM and SubX reforecast skill, we find that ASM dominates probabilistic forecast skill only for small flood events at week 1, while SubX reforecast skill dominates for large flood events at all lead times.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0219.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dennis P. Lettenmaier, dlettenm@ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.66 MB)
Save