Lake-Effect Rains over Lake Victoria and Their Association with Mesoscale Convective Systems

Sharon E. Nicholson aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Sharon E. Nicholson in
Current site
Google Scholar
PubMed
Close
,
Douglas Klotter aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Douglas Klotter in
Current site
Google Scholar
PubMed
Close
, and
Adam T. Hartman aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Adam T. Hartman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article examined rainfall enhancement over Lake Victoria. Estimates of overlake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for overlake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the “ground truth” and was used in further analyses. Overlake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March–May long rains the enhancement varied between 40% and 50%. During the October–December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for overlake and catchment rainfall, suggesting that the dominant influence on overlake rainfall is the large-scale environment. The association with mesoscale convective systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.

Significance Statement

The article underscores the difficulty of IMERG-F and other passive microwave retrievals in assessing rainfall over inland water bodies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sharon E. Nicholson, snicholson@fsu.edu

Abstract

This article examined rainfall enhancement over Lake Victoria. Estimates of overlake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for overlake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the “ground truth” and was used in further analyses. Overlake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March–May long rains the enhancement varied between 40% and 50%. During the October–December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for overlake and catchment rainfall, suggesting that the dominant influence on overlake rainfall is the large-scale environment. The association with mesoscale convective systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.

Significance Statement

The article underscores the difficulty of IMERG-F and other passive microwave retrievals in assessing rainfall over inland water bodies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sharon E. Nicholson, snicholson@fsu.edu
Save
  • Akurut, M., P. Willems, and C. B. Niwagaba, 2014: Potential impacts of climate change on precipitation over Lake Victoria, East Africa, in the 21st century. Water, 6, 26342659, https://doi.org/10.3390/w6092634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., F. H. M. Semazzi, and L. Xie, 2006: Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Mon. Wea. Rev., 134, 35883609, https://doi.org/10.1175/MWR3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN- CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aslami, F., A. Ghorbani, B. Sobhani, and A. Esmali, 2019: Comprehensive comparison of daily IMERG and GSMaP satellite precipitation products in Ardabil Province, Iran. Int. J. Remote Sens., 40, 31393153, https://doi.org/10.1080/01431161.2018.1539274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asong, Z. E., S. Razavi, H. S. Wheater, and J. S. Wong, 2017: Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment. J. Hydrometeor., 18, 10331050, https://doi.org/10.1175/JHM-D-16-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awange, J. L., V. G. Ferreira, E. Forootan, S. A. Khandu, S. A. Andam-Akorful, N. O. Agutu, and X. F. He, 2016: Uncertainties in remotely sensed precipitation data over Africa. Int. J. Climatol., 36, 303323, https://doi.org/10.1002/joc.4346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and S. E. Nicholson, 1998: Analysis of convective activity and its relationship to the rainfall over the Rift Valley lakes of East Africa during 1983-90 using Meteosat infrared channel. J. Appl. Meteor., 37, 12501264, https://doi.org/10.1175/1520-0450(1998)037<1250:AOCAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beighley, R. E., and Coauthors, 2011: Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River basin. Hydrol. Processes, 25, 32163229, https://doi.org/10.1002/hyp.8045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergonzini, L., 1998: Bilans hydriques de lacs (Kivu, Tanganyika, Rukwa et Nyassa) du rift Est-Africain. Musée Royal de l’Afrique Centrale de Tervuren Belgique Annales des Sciences Géologiques, Vol. 103, Musée Royal de l’Afrique Centrale, 183 pp.

  • Bergonzini, L., Y. Richard, and P. Camberlin, 2002: Interannual variation of the water budget of Lake Tanganyika (1932-1995): Changes in the precipitation-lake water excess relationship. Hydrol. Sci. J., 47, 781796, https://doi.org/10.1080/02626660209492980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camberlin, P., and Coauthors, 2019: Evaluation of remotely sensed rainfall products over central Africa. Quart. J. Roy. Meteor. Soc., 145, 21152138, https://doi.org/10.1002/qj.3547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattani, E., A. Merino, and V. Levizzani, 2016: Evaluation of monthly satellite-derived precipitation products over East Africa. J. Hydrometeor., 17, 25552573, https://doi.org/10.1175/JHM-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chebud, Y. A., and A. M. Melesse, 2009: Modelling lake stage and water balance of Lake Tana, Ethiopia. Hydrol. Processes, 23, 35343544, https://doi.org/10.1002/hyp.7416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and X. Li, 2016: Evaluation of IMERG and TRMM 3B43 monthly precipitation products over Mainland China. Remote Sens., 8, 472, https://doi.org/10.3390/rs8060472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, Z. Feng, and J. W. Fan, 2020: Can the GPM IMERG Final Product accurately represent MCSs precipitation characteristics over the central and eastern United States? J. Hydrometeor., 21, 3957, https://doi.org/10.1175/JHM-D-19-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Datta, R. K., 1981: Certain aspects of monsoonal precipitation dynamics over Lake Victoria. Monsoon Dynamics, J. Lighthill and R. Pearce, Eds., Cambridge Press, 333–348.

    • Crossref
    • Export Citation
  • Dezfuli, A. K., C. M. Ichoku, G. J. Huffman, K. I. Mohr, J. S. Selker, N. van de Giesen, R. Hochreutener, and F. O. Annor, 2017: Validation of IMERG precipitation in Africa. J. Hydrometeor., 18, 28172825, https://doi.org/10.1175/JHM-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Baldassarre, G., and Coauthors, 2011: Future hydrology and climate in the River Nile basin: A review. Hydrol. Sci. J., 56, 199211, https://doi.org/10.1080/02626667.2011.557378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018: Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart. J. Roy. Meteor. Soc., 144, 292312, https://doi.org/10.1002/qj.3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1983: Das Katastrophenregen 1961/62 und die Wasserbilanz des Viktoria-See-Gebietes. Wiss. Ber. Meteor. Inst. Univ. Karlsruhe, 4, 1734.

    • Search Google Scholar
    • Export Citation
  • Flohn, H., and K. Fraedrich, 1966: Tagesperiodische Zirkulation und Niederschlagsverteilung am Victoria-See (Ostafrika). Meteor. Rundsch., 19, 157165.

    • Search Google Scholar
    • Export Citation
  • Flohn, H., and T. Burkhardt, 1985: Nile runoff at Aswan and Lake Victoria; an example of a discontinuous climate time series. Z. Gletschkd. Glazialgeol., 21, 125130.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1968: Das Land- und Seewindsystem des Victoria-Sees nach aerologischen Daten. Arch. Meteor. Biokl. Geophys., 17A, 186206.

  • Fraedrich, K., 1971: Modell einer lokalen atmosphärischen Zirkulation mit Anwendung auf den Victoria-See. Beitr. Phys. Atmos., 44, 95114.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1972: A simple climatological model of the dynamics and energetics of the nocturnal circulation at Lake Victoria. Quart. J. Roy. Meteor. Soc., 98, 322335, https://doi.org/10.1002/qj.49709841606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C. C., S. E. Nicholson, M. Landsfeld, D. A. Klotter, P. Peterson, and L. Harrison, 2015: The Centennial Trends Greater Horn of Africa precipitation dataset. Sci. Data, 2, 150050, https://doi.org/10.1038/sdata.2015.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., E. Foufoula-Georgiou, and C. D. Kummerow, 2017: Global multiscale evaluation of satellite passive microwave retrieval of precipitation during TRMM and GPM eras: Effective resolution and regional diagnostics for future algorithm development. J. Hydrometeor., 18, 30513070, https://doi.org/10.1175/JHM-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haile, A. T., E. Habib, M. Elsaadani, and T. Rientjes, 2013: Inter-comparison of satellite rainfall products for representing rainfall diurnal cycle over the Nile basin. Int. J. Appl. Earth Obs. Geoinf., 21, 230240, https://doi.org/10.1016/j.jag.2012.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartman, A. T., 2016: Tracking and analysis of mesoscale convective systems over central equatorial Africa. M.S. thesis, Dept. of Earth, Ocean, and Atmospheric Science, Florida State University, 68 pp., http://purl.flvc.org/fsu/fd/FSU_FA2016_Hartman_fsu_0071N_13642.

  • Hartman, A. T., 2020: Tracking mesoscale convective systems in central equatorial Africa. Int. J. Climatol., 41, 469482, https://doi.org/10.1002/joc.6632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, P., M. Lock, and S. Cobb, 1988: The Jonglei Canal: Impact and Opportunity. Cambridge University Press, 537 pp.

  • Huffman, G. J., and D. T. Bolvin, 2014: TRMM and other data precipitation data set documentation. NASA TRMM Doc., 42 pp., ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at finer scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Day 1 IMERG Final Run release notes. NASA Doc., 9 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA Tech. Doc., 71 pp., https://pmm.nasa.gov/data-access/downloads/gpm.

  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, https://doi.org/10.1175/2008MWR2525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kebede, S., Y. Travi, T. Alemayehu, and V. Marc, 2006: Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J. Hydrol., 316, 233247, https://doi.org/10.1016/j.jhydrol.2005.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kizza, M., I. Westerberg, A. Rodhe, and H. K. Ntale, 2012: Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. J. Hydrol., 464–465, 401411, https://doi.org/10.1016/j.jhydrol.2012.07.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehman, J., 2002: Application of AVHRR to water balance, mixing dynamics, and water chemistry of Lake Edward, East Africa. The East African Great Lakes: Limnology, Palaeolimnology, Biodiversity, E. O. Odada and D. Olago, Eds., Springer Science & Business Media, 235–260.

    • Crossref
    • Export Citation
  • Liebmann, B., and Coauthors, 2017: Climatology and interannual variability of boreal spring wet season precipitation in the eastern Horn of Africa and implications for its recent decline. J. Climate, 30, 38673886, https://doi.org/10.1175/JCLI-D-16-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, https://doi.org/10.1175/JHM-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longandjo, G.-N. T., 2018: The hydroclimate variability of Central Africa: Seasonal cycle, mechanisms, teleconnections and impacts on neighbouring regions. Ph.D. thesis, University of Cape Town, 165 pp.

  • Lyons, R. P., C. N. Kroll, and C. A. Scholz, 2011: An energy balance hydrologic model for the Lake Malawi Rift Basin, East Africa. Global Planet. Change, 75, 8397, https://doi.org/10.1016/j.gloplacha.2010.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666679, https://doi.org/10.1175/1520-0450-39.5.666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munzimi, Y., M. Hansen, B. Adusei, and G. Senay, 2015: Characterizing Congo Basin rainfall and climate using Tropical Rainfall Measuring Mission (TRMM) satellite data and limited rain gauge ground observations. J. Appl. Meteor. Climatol., 54, 541556, https://doi.org/10.1175/JAMC-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muvundja, F. A., A. Wüest, M. Isumbisho, M. B. Kaningini, N. Pasche, P. Rinta, and M. Schmid, 2014: Modelling Lake Kivu water level variations over the last seven decades. Limnologica, 47, 2133, https://doi.org/10.1016/j.limno.2014.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and ice observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590635, https://doi.org/10.1002/2016RG000544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2018: The ITCZ and the seasonal cycle over equatorial Africa. Bull. Amer. Meteor. Soc., 99, 337348, https://doi.org/10.1175/BAMS-D-16-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2021: The rainfall and convective regime over equatorial Africa, with emphasis on the Congo Basin. Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future, D. Alsdorf, R. Tshimanga, and G. Moukandi, Eds., Amer. Geophys. Union, in press.

  • Nicholson, S. E., and X. G. Yin, 2002: Mesoscale patterns of rainfall, cloudiness and evaporation over the Great Lakes of East Africa. The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity, E. O. Odada and D. Olago, Eds., Springer Science & Business Media, 93–119.

    • Crossref
    • Export Citation
  • Nicholson, S. E., C. Funk, and A. Fink, 2018: Rainfall over the African continent from the 19th through 21st century. Global Planet. Change, 165, 114127, https://doi.org/10.1016/j.gloplacha.2017.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., D. Klotter, L. Zhou, and W. Hua, 2019: Validation of satellite precipitation estimates over the Congo Basin. J. Hydrometeor., 20, 631656, https://doi.org/10.1175/JHM-D-18-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., and P.-E. Kirstetter, 2018: Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Quart. J. Roy. Meteor. Soc., 144, 270281, https://doi.org/10.1002/qj.3218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, S., U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and W. A. Petersen, 2017: Evaluation of GPM IMERG early, late, and final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci., 21, 65596572, https://doi.org/10.5194/hess-21-6559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogallo, L. J., P. Bessemoulin, J. P. Ceron, S. Mason, and S. J. Connor, 2008: Adapting to climate variability and change: The climate outlook forum process. WMO Bull., 57, 93102.

    • Search Google Scholar
    • Export Citation
  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, https://doi.org/10.1175/JAMC-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rientjes, T. H. M., B. U. J. Perera, A. T. Haile, P. Reggiani, and L. P. Muthuwatta, 2011: Regionalisation for lake level simulation - The case of Lake Tana in the Upper Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci., 15, 11671183, https://doi.org/10.5194/hess-15-1167-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios Gaona, M. F., A. Overeem, H. Leijnse, and R. Uijlemhoet, 2016: First-year evaluation of GPM rainfall over the Netherlands: IMERG Day 1 Final Run (V03D). J. Hydrometeor., 17, 27992814, https://doi.org/10.1175/JHM-D-16-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sene, K. J., 2000: Theoretical estimates for the influence of Lake Victoria on flows in the upper White Nile. Hydrol. Sci. J., 45, 125145, https://doi.org/10.1080/02626660009492310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifi, E., R. Steinacker, and B. Saghafian, 2016: Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens., 8, 135, https://doi.org/10.3390/rs8020135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2009: Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol., 370, 163176, https://doi.org/10.1016/j.jhydrol.2009.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: Diurnal cycle of IMERG V06 precipitation. Geophys. Res. Lett., 46, 13 58413 592, https://doi.org/10.1029/2019GL085395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tate, E., J. Sutcliffe, D. Conway, and F. Farquharson, 2004: Water balance of Lake Victoria: Update to 2000 and climate change modelling to 2100. Hydrol. Sci. J., 49, 563574, https://doi.org/10.1623/hysj.49.4.563.54422.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., E. L. Davin, H. J. Panitz, M. Demuere, S. Lhermitte, and N. van Lipzig, 2015: The impact of the African Great Lakes on regional climate. J. Climate, 28, 40614085, https://doi.org/10.1175/JCLI-D-14-00565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, https://doi.org/10.1029/2007GL030787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 14, D24101, https://doi.org/10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tigabu, T. B., P. D. Wagner, G. Hoermann, and N. Fohrer, 2019: Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana basin, Ethiopia. Hydrol. Res., 50, 13761396, https://doi.org/10.2166/nh.2019.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderkelen, I., N. P. N. van Lipzig, and W. Thiery, 2018: Modelling the water balance of lake Victoria (East Africa) - Part 1: Observational analysis. Hydrol. Earth Syst. Sci., 22, 55095525, https://doi.org/10.5194/hess-22-5509-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Walle, J., W. Thiery, O. Brousse, N. Souverijns, M. Demuzere, and N. P. M. van Lipzig, 2020: A convection-permitting model for the Lake Victoria Basin: Evaluation and insight into the mesoscale versus synoptic atmospheric dynamics. Climate Dyn., 54, 17791799, https://doi.org/10.1007/s00382-019-05088-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velpuri, N. M., G. B. Senay, and K. O. Asante, 2012: A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data. Hydrol. Earth Syst. Sci., 16, 118, https://doi.org/10.5194/hess-16-1-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wale, A., T. H. M. Rientjes, A. S. M. Gieske, and H. A. Getachew, 2009: Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Processes, 23, 36823693, https://doi.org/10.1002/hyp.7284.

    • Search Google Scholar
    • Export Citation
  • Wang, Z. L., R. D. Zhong, C. G. Lai, and J. C. Chen, 2017: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res., 196, 151163, https://doi.org/10.1016/j.atmosres.2017.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2015: The annual cycle of East African precipitation. J. Climate, 28, 23852404, https://doi.org/10.1175/JCLI-D-14-00484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, X. G., and S. E. Nicholson, 1998: The water balance of Lake Victoria. Hydrol. Sci. J., 43, 789811, https://doi.org/10.1080/02626669809492173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, X. G., and S. E. Nicholson, 2002: Interpreting annual rainfall from the levels of Lake Victoria. J. Hydrometeor., 3, 406416, https://doi.org/10.1175/1525-7541(2002)003<0406:IARFTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 442 0 0
Full Text Views 511 265 11
PDF Downloads 422 153 8