• Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proc. Fifth Assembly U.G.G.I., Lisbon, Portugal, U.G.G.I, 156–180, https://ci.nii.ac.jp/naid/10024028214/.

  • California Department of Water Resources, 2019: Latest snow survey finds water-rich snowpack. California Dept. of Water Resources, accessed 22 July 2019, https://water.ca.gov/News/News-Releases/2019/February/Latest-Snow-Survey-Finds-Water-Rich-Snowpack.

  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795808, https://doi.org/10.1175/BAMS-86-6-795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Y. Zeng, 2004: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 27802801, https://doi.org/10.1175/MWR2821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and et al. , 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., Z. Jiang, J. Y. Harrington, J. Verlinde, K. Fitch, and T. J. Garrett, 2019: The shape and density evolution of snow aggregates. J. Atmos. Sci., 76, 39193940, https://doi.org/10.1175/JAS-D-19-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121133.

  • Fletcher, N. H., 1962: The Physics of Rainclouds. University Press, 389 pp.

  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaudet, L. C., K. J. Sulia, F. Yu, and G. Luo, 2019: Sensitivity of lake-effect cloud microphysical processes to ice crystal habit and nucleation during OWLeS IOP4. J. Atmos. Sci., 76, 34113434, https://doi.org/10.1175/JAS-D-19-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and B. J. Mason, 1958: The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour. Proc. Roy. Soc. London, 247A, 440453, https://doi.org/10.1098/rspa.1958.0199.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018: Impacts of ice particle shape and density evolution on the distribution of orographic precipitation. J. Atmos. Sci., 75, 30953114, https://doi.org/10.1175/JAS-D-17-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., P. T. Bergmaier, B. Geerts, H. Morrison, and L. S. Campbell, 2020: Sensitivity of convective cell dynamics and microphysics to model resolution for the OWLeS IOP2b lake-effect snowband. Mon. Wea. Rev., 148, 33053328, https://doi.org/10.1175/MWR-D-19-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karrer, M., A. Seifert, C. Siewert, D. Ori, A. V. Lerber, and S. Kneifel, 2020: Ice particle properties inferred from aggregation modelling. J. Adv. Model. Earth Syst., 12, e2020MS002066, https://doi.org/10.1029/2020MS002066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., 1957: Experimental researches on the snow crystal habit and growth by means of a diffusion cloud chamber. J. Meteor. Soc. Japan, 35A, 3847, https://doi.org/10.2151/jmsj1923.35A.0_38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, B. A., M. I. Shebsovich, M. J. Glaudemans, and P. S. Tilles, 2003: Enhancing precipitation estimation capabilities at National Weather Service field offices using multi-sensor precipitation data mosaics. 19th Int. Conf. on Interactive Information Processing Systems, Seattle, WA, Amer. Meteor. Soc., 15.1, https://ams.confex.com/ams/annual2003/techprogram/paper_54867.htm.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, https://doi.org/10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., J. S. Snook, D. A. Wesley, and G. S. Poulos, 2003: A Rocky mountain storm. Part II: The forest blowdown over the west slope of the northern Colorado mountains—Observations, analysis, and modeling. Wea. Forecasting, 18, 662674, https://doi.org/10.1175/1520-0434(2003)018<0662:ARMSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, https://doi.org/10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naeger, A. R., B. A. Colle, N. Zhou, and A. Molthan, 2020: Evaluating warm and cold rain processes in cloud microphysical schemes using OLYMPEX field measurements. Mon. Wea. Rev., 148, 21632190, https://doi.org/10.1175/MWR-D-19-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakaya, U., 1954: Snow Crystals, Natural and Artificial. Harvard University Press, 510 pp.

  • Ono, A., 1970: Growth mode of ice crystals in natural clouds. J. Atmos. Sci., 27, 649658, https://doi.org/10.1175/1520-0469(1970)027<0649:GMOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., D. A. Wesley, J. S. Snook, and M. P. Meyers, 2002: A Rocky mountain storm. Part I: The blizzard—Kinematic evolution and the potential for high-resolution numerical forecasting of snowfall. Wea. Forecasting, 17, 955970, https://doi.org/10.1175/1520-0434(2002)017<0955:ARMSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., and J. R. Miller, 2012: Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527547, https://doi.org/10.1007/s10584-012-0419-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: Simulations of the North American monsoon system. Part I: Model analysis of the 1993 monsoon season. J. Climate, 17, 19972018, https://doi.org/10.1175/1520-0442(2004)017<1997:SOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2005: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteor., 44, 19121929, https://doi.org/10.1175/JAM2312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU–RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and N. Fukuta, 1988: Supercooled cloud tunnel studies on the growth of snow crystals between −4 and −20°C. J. Meteor. Soc. Japan, 66, 841855, https://doi.org/10.2151/jmsj1965.66.6_841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, G. Wakahama, and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteor. Soc. Japan, 69, 1530, https://doi.org/10.2151/jmsj1965.69.1_15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, T.-C., and J.-P. Chen, 2020: Multimoment ice bulk microphysics scheme with consideration for particle shape and apparent density. Part I: Methodology and idealized simulation. J. Atmos. Sci., 77, 18211850, https://doi.org/10.1175/JAS-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth, 331 pp.

  • Woods, C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948, https://doi.org/10.1175/2007JAS2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and K.-N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 54
Full Text Views 33 33 15
PDF Downloads 56 56 23

The Effects of Ice Habit on Simulated Orographic Snowfall

View More View Less
  • 1 a Department of Land, Air and Water Resources, University of California, Davis, Davis, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Many factors are at play in determining the amount and distribution of mountain snowfall predicted by weather models; among them is the influence of assumed ice habit. Ice habit is necessarily greatly simplified in microphysics schemes and uncertainty remains in how best to model ice processes. In this study we simulate a Sierra Nevada snowfall event driven by an extratropical cyclone in February 2014. We have simulated the storm with four fixed-habit types as well as with an ice habit scheme that is variable in time and space. In contrast to some previous studies, we found substantially smaller sensitivity of total accumulated precipitation amount and negligible changes in spatial distribution to the ice habit specification. The reason for smaller sensitivity seems to be linked to strong aggregation of ice crystals in the model. Nonetheless, while changes in total accumulated precipitation were small, changes in accumulated ice hydrometeors were larger. The variable-habit simulation produced up to 37% more ice precipitation than any of the fixed-habit simulations with an average increase of 14%. The variable-habit simulation led to a maximization of ice growth in the atmosphere and, subsequently, ice accumulation at the surface. This result points to the potential importance of accounting for the time and space variation of ice crystal properties in simulations of orographic precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lucas Sterzinger, lsterzinger@ucdavis.edu

Abstract

Many factors are at play in determining the amount and distribution of mountain snowfall predicted by weather models; among them is the influence of assumed ice habit. Ice habit is necessarily greatly simplified in microphysics schemes and uncertainty remains in how best to model ice processes. In this study we simulate a Sierra Nevada snowfall event driven by an extratropical cyclone in February 2014. We have simulated the storm with four fixed-habit types as well as with an ice habit scheme that is variable in time and space. In contrast to some previous studies, we found substantially smaller sensitivity of total accumulated precipitation amount and negligible changes in spatial distribution to the ice habit specification. The reason for smaller sensitivity seems to be linked to strong aggregation of ice crystals in the model. Nonetheless, while changes in total accumulated precipitation were small, changes in accumulated ice hydrometeors were larger. The variable-habit simulation produced up to 37% more ice precipitation than any of the fixed-habit simulations with an average increase of 14%. The variable-habit simulation led to a maximization of ice growth in the atmosphere and, subsequently, ice accumulation at the surface. This result points to the potential importance of accounting for the time and space variation of ice crystal properties in simulations of orographic precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lucas Sterzinger, lsterzinger@ucdavis.edu
Save