Uncertainty in SPI Calculation and Its Impact on Drought Assessment in Different Climate Regions over China

Wen Wang aState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Sciences, Hohai University, Nanjing, China

Search for other papers by Wen Wang in
Current site
Google Scholar
PubMed
Close
,
Jingshu Wang aState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Sciences, Hohai University, Nanjing, China

Search for other papers by Jingshu Wang in
Current site
Google Scholar
PubMed
Close
, and
Renata Romanowicz bInstitute of Geophysics, Polish Academy of Sciences, Warsaw, Poland

Search for other papers by Renata Romanowicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Uncertainty in the calculation of a standardized precipitation index (SPI) attracted growing concerns in the hydrometeorology research community in the last decade. This issue is addressed in the present study from the perspective of candidate probability distributions, the data record length, the cumulative time scale, and the selection of a reference period with the bootstrap and Monte Carlo methods using daily precipitation data observed in four climate regions across China. The impacts of the uncertainty in an SPI calculation on drought assessment are also investigated. Results show that the gamma distribution is optimal in describing the cumulative precipitation in China; among the four time scales investigated in the present study (i.e., 10, 20, 30, and 90 days), the minimal time scale appropriate for SPI calculation is 20 days for the humid region, 30 days for the semihumid/semiarid region and Tibetan Plateau (mostly its eastern part), and 90 days for the arid region. The uncertainty in SPI calculation decreases with the increase of time scale and record length, essentially as a consequence of the decrease of the confidence interval width of gamma distribution parameters with the increase of time scale and record length. But there is little improvement for the parameter estimation with record length longer than 70 years. There is greater uncertainty for high absolute SPI values than for small ones; consequently, there is greater uncertainty in assessing extreme droughts than moderate droughts. Reference period selection has large impacts on drought assessment, especially in the context of climate change. The uncertainty of the SPI calculation has large impacts on categorizing droughts, but no impact on assessing the temporal features of drought variation.

Significance Statement

The standardized precipitation index (SPI) is the most commonly used drought index over the world for drought assessment, but there are several issues not well recognized in its application, such as the uncertainty resulting from the choice of time scales, the record length, and the reference period for its calculation. A comprehensive evaluation of these issues will be helpful for better interpreting SPI values for drought assessments, especially in the context of climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Wang, wangwen@hhu.edu.cn

Abstract

Uncertainty in the calculation of a standardized precipitation index (SPI) attracted growing concerns in the hydrometeorology research community in the last decade. This issue is addressed in the present study from the perspective of candidate probability distributions, the data record length, the cumulative time scale, and the selection of a reference period with the bootstrap and Monte Carlo methods using daily precipitation data observed in four climate regions across China. The impacts of the uncertainty in an SPI calculation on drought assessment are also investigated. Results show that the gamma distribution is optimal in describing the cumulative precipitation in China; among the four time scales investigated in the present study (i.e., 10, 20, 30, and 90 days), the minimal time scale appropriate for SPI calculation is 20 days for the humid region, 30 days for the semihumid/semiarid region and Tibetan Plateau (mostly its eastern part), and 90 days for the arid region. The uncertainty in SPI calculation decreases with the increase of time scale and record length, essentially as a consequence of the decrease of the confidence interval width of gamma distribution parameters with the increase of time scale and record length. But there is little improvement for the parameter estimation with record length longer than 70 years. There is greater uncertainty for high absolute SPI values than for small ones; consequently, there is greater uncertainty in assessing extreme droughts than moderate droughts. Reference period selection has large impacts on drought assessment, especially in the context of climate change. The uncertainty of the SPI calculation has large impacts on categorizing droughts, but no impact on assessing the temporal features of drought variation.

Significance Statement

The standardized precipitation index (SPI) is the most commonly used drought index over the world for drought assessment, but there are several issues not well recognized in its application, such as the uncertainty resulting from the choice of time scales, the record length, and the reference period for its calculation. A comprehensive evaluation of these issues will be helpful for better interpreting SPI values for drought assessments, especially in the context of climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Wang, wangwen@hhu.edu.cn
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Automat. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angelidis, P., F. Maris, N. Kotsovinos, and V. Hrissanthou, 2012: Computation of drought index SPI with alternative distribution functions. Water Resour. Manage., 26, 24532473, https://doi.org/10.1007/s11269-012-0026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blain, G. C., 2012: Revisiting the probabilistic definition of drought: Strengths, limitations and an agrometeorological adaptation. Bragantia, 71, 132141, https://doi.org/10.1590/S0006-87052012000100019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blain, G. C., A. M. H. de Avila, and V. R. Pereira, 2018: Using the normality assumption to calculate probability-based standardized drought indices: Selection criteria with emphases on typical events. Int. J. Climatol., 38, e418e436, https://doi.org/10.1002/joc.5381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bomers, A., R. M. J. Schielen, and S. J. M. H. Hulscher, 2019: Decreasing uncertainty in flood frequency analyses by including historic flood events in an efficient bootstrap approach. Nat. Hazards Earth Syst. Sci., 19, 18951908, https://doi.org/10.5194/nhess-19-1895-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnham, K. P., and D. R. Anderson, 2004: Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33, 261304, https://doi.org/10.1177/0049124104268644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, G. J., J. Lu, and M. Brunetti, 2018: Estimating uncertainty associated with the standardized precipitation index. Int. J. Climatol., 38, e607e616, https://doi.org/10.1002/joc.5393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, J., S. Jha, and M. K. Goyal, 2020: Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India. J. Hydrol., 580, 124356, https://doi.org/10.1016/j.jhydrol.2019.124356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., B. N. Belcher, and W. Noon, 2015: Temporal and spatial interpolation of the standardized precipitation index for computational efficiency in the dynamic drought index tool. J. Appl. Meteor. Climatol., 54, 795810, https://doi.org/10.1175/JAMC-D-14-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., P. Brando, G. P. Asner, and C. B. Field, 2015: Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 13 17213 177, https://doi.org/10.1073/pnas.1421010112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Computers and the theory of statistics: Thinking the unthinkable. SIAM Rev., 21, 460480, https://doi.org/10.1137/1021092.

  • Fligner, M. A., and T. J. Killeen, 1976: Distribution-free two-sample tests for scale. J. Amer. Stat. Assoc., 71, 210213, https://doi.org/10.1080/01621459.1976.10481517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. P. Boisier, R. Rondanelli, A. Montecinos, H. H. Sepúlveda, and D. Veloso-Aguila, 2020: The Central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol., 40, 421439, https://doi.org/10.1002/joc.6219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, D., and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, https://doi.org/10.1002/2014GL062433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenang, G. M., and Coauthors, 2019: Sensitivity of SPI to distribution functions and correlation between its values at different time scales in Central Africa. Earth Syst. Environ., 3, 203214, https://doi.org/10.1007/s41748-019-00102-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerreiro, S. B., C. Kilsby, and H. J. Fowler, 2017: Assessing the threat of future megadrought in Iberia. Int. J. Climatol., 37, 50245034, https://doi.org/10.1002/joc.5140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1994: On the sensitivity of sample L moments to sample size. J. Climate, 7, 10261029, https://doi.org/10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y.-M., Z.-M. Liang, Y.-W. Liu, J. Wang, L. Yao, and Y. Ning, 2015: Uncertainty analysis of SPI calculation and drought assessment based on the application of bootstrap. Int. J. Climatol., 35, 18471857, https://doi.org/10.1002/joc.4091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khanmohammadi, N., H. Rezaie, and J. Behmanesh, 2018: The spatial–temporal variation of dry and wet periods in Iran based on comparing SPI and RDI indices. Stochastic Environ. Res. Risk Assess., 32, 27712785, https://doi.org/10.1007/s00477-018-1594-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, M., and J. H. Sung, 2019: Changes in future drought with HadGEM2-AO projections. Water, 11, 312, https://doi.org/10.3390/w11020312.

  • Kyselý, J., 2010: Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data. Theor. Appl. Climatol., 101, 345361, https://doi.org/10.1007/s00704-009-0190-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. Z., Y. X. Wang, S. F. Li, and R. Hu, 2015: A nonstationary Standardized Precipitation Index incorporating climate indices as covariates. J. Geophys. Res. Atmos., 120, 12 08212 095, https://doi.org/10.1002/2015JD023920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y.-W., W. Wang, Y.-M. Hu, and Z.-M. Liang, 2014: Drought assessment and uncertainty analysis for Dapoling basin. Nat. Hazards, 74, 16131627, https://doi.org/10.1007/s11069-014-1259-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Mohammed, R., and M. Scholz, 2019: Climate change and water resources in arid regions: Uncertainty of the baseline time period. Theor. Appl. Climatol., 137, 13651376, https://doi.org/10.1007/s00704-018-2671-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okpara, J. N., E. A. Afiesimama, A. C. Anuforom, A. Owino, and K. O. Ogunjobi, 2017: The applicability of standardized precipitation index: Drought characterization for early warning system and weather index insurance in West Africa. Nat. Hazards, 89, 555583, https://doi.org/10.1007/s11069-017-2980-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., J. H. Sung, Y. Lim, and H. Kang, 2019: Introduction and application of non-stationary standardized precipitation index considering probability distribution function and return period. Theor. Appl. Climatol., 136, 529542, https://doi.org/10.1007/s00704-018-2500-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulo, A., D. Martins, and L. S. Pereira, 2016: Influence of precipitation changes on the SPI and related drought severity. An analysis using long-term data series. Water Resour. Manage., 30, 57375757, https://doi.org/10.1007/s11269-016-1388-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pieper, P., A. Düsterhus, and J. Baehr, 2020: A universal Standardized Precipitation Index candidate distribution function for observations and simulations. Hydrol. Earth Syst. Sci., 24, 45414565, https://doi.org/10.5194/hess-24-4541-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2019: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Rashid, M. M., and S. Beecham, 2019: Development of a non-stationary Standardized Precipitation Index and its application to a South Australian climate. Sci. Total Environ., 657, 882892, https://doi.org/10.1016/j.scitotenv.2018.12.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raziei, T., 2021: Performance evaluation of different probability distribution functions for computing Standardized Precipitation Index over diverse climates of Iran. Int. J. Climatol., 41, 33523373, https://doi.org/10.1002/joc.7023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., A. Dosio, A. Sterl, P. Barbosa, and J. Vogt, 2013: Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices. J. Geophys. Res. Atmos., 118, 76287639, https://doi.org/10.1002/jgrd.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiau, J.-T., 2020: Effects of gamma-distribution variations on SPI-based stationary and nonstationary drought analyses. Water Resour. Manage., 34, 20812095, https://doi.org/10.1007/s11269-020-02548-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sienz, F., O. Bothe, and K. Fraedrich, 2012: Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias. Hydrol. Earth Syst. Sci., 16, 21432157, https://doi.org/10.5194/hess-16-2143-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinoni, J., G. Naumann, H. Carrao, P. Barbosa, and J. Vogt, 2014: World drought frequency, duration, and severity for 1951-2010. Int. J. Climatol., 34, 27922804, https://doi.org/10.1002/joc.3875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, and K. Stahl, 2015: Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol., 35, 40274040, https://doi.org/10.1002/joc.4267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., A. Mejia, P. Zeng, and Y. Che, 2019: Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin. Sci. Total Environ., 696, 134076, https://doi.org/10.1016/j.scitotenv.2019.134076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, C., J. Hannaford, and I. Prosdocimi, 2017: Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications. Water Resour. Res., 53, 9991018, https://doi.org/10.1002/2016WR019276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, I. H., E. Burke, L. Mccoll, P. D. Falloon, G. R. Harris, and D. Mcneall, 2013: The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci., 17, 23392358, https://doi.org/10.5194/hess-17-2339-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Touma, D., M. Ashfaq, M. A. Nayak, S. C. Kao, and N. S. Diffenbaugh, 2015: A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol., 526, 196207, https://doi.org/10.1016/j.jhydrol.2014.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Türkeş, M., and H. Tatlı, 2009: Use of the standardized precipitation index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. Int. J. Climatol., 29, 22702282, https://doi.org/10.1002/joc.1862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergni, L., B. Di Lena, F. Todisco, and F. Mannocchi, 2017: Uncertainty in drought monitoring by the Standardized Precipitation Index: The case study of the Abruzzo region (central Italy). Theor. Appl. Climatol., 128, 1326, https://doi.org/10.1007/s00704-015-1685-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, W., J. Zhao, and H. Li, 2018: A holistic view of water management impacts on future droughts: A global multimodel analysis. J. Geophys. Res. Atmos., 123, 59475972, https://doi.org/10.1029/2017JD027825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., Y. Zhu, R. Xu, and J. Liu, 2015: Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat. Hazards, 75, 24372451, https://doi.org/10.1007/s11069-014-1436-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Li, P. Feng, and R. Hu, 2015: A time-dependent drought index for non-stationary precipitation series. Water Resour. Manage., 29, 56315647, https://doi.org/10.1007/s11269-015-1138-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2012: Standardized precipitation index user guide. WMO 1090, WMO, 24 pp., https://library.wmo.int/doc_num.php?explnum_id=7768.

  • World Meteorological Organization, 2017: Guidelines on the calculation of climate normals. WMO 1203, WMO, 29 pp., https://library.wmo.int/doc_num.php?explnum_id=4166.

  • Wu, H., M. J. Hayes, D. A. Wilhite, and M. D. Svoboda, 2005: The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol., 25, 505520, https://doi.org/10.1002/joc.1142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, 2007: Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol., 27, 6579, https://doi.org/10.1002/joc.1371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, N., and Coauthors, 2020: Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Sci. Total Environ., 704, 135245, https://doi.org/10.1016/j.scitotenv.2019.135245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Z. Li, 2020: Uncertainty analysis of Standardized Precipitation Index due to the effects of probability distributions and parameter errors. Front. Earth Sci., 8, 76, https://doi.org/10.3389/feart.2020.00076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, R., H. Wang, C. Zhan, S. Hu, M. Ma, and Y. Dong, 2020: Comparative analysis of probability distributions for the Standardized Precipitation Index and drought evolution in China during 1961–2015. Theor. Appl. Climatol., 139, 13631377, https://doi.org/10.1007/s00704-019-03050-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 627 0 0
Full Text Views 915 569 50
PDF Downloads 894 501 45