Factors Governing Winter Snow Accumulation and Ablation Susceptibility across the Sierra Nevada (United States)

K. Haleakala aDepartment of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by K. Haleakala in
Current site
Google Scholar
PubMed
Close
,
M. Gebremichael aDepartment of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Gebremichael in
Current site
Google Scholar
PubMed
Close
,
J. Dozier bBren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by J. Dozier in
Current site
Google Scholar
PubMed
Close
, and
D. P. Lettenmaier cDepartment of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by D. P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seasonal snow water equivalent (SWE) accumulation in California’s Sierra Nevada is primarily governed by a few orographically enhanced snowstorms. However, as air temperatures gradually rise, resulting in a shift from snow to rain, the governing processes determining SWE accumulation versus ablation become ambiguous. Using a network of 28 snow pillow measurements to represent an elevational and latitudinal gradient across the Sierra Nevada, we identify distributions of critical temperatures and corresponding storm and snowpack properties that describe how SWE accumulation varies across the range at an hourly time scale for water years 2010–19. We also describe antecedent and prevailing conditions governing whether SWE accumulates or ablates during warm storms. Results show that atmospheric moisture regulates a temperature dependence of SWE accumulation. Conditions balancing precipitable water and snow formation requirements produce the most seasonal SWE, which was observed in the (low-elevation) northern and (middle-elevation) central Sierra Nevada. The high southern Sierra Nevada conservatively accumulates SWE with colder, drier air, resulting in less midwinter ablation. These differences explain a tendency for deep, low-density snowpacks to accumulate rather than ablate SWE during warm storms (having median temperatures exceeding 1.0°C), reflecting counteracting liquid storage and internal energy deficits. The storm events themselves in these cases are brief with modest moisture supplies or are otherwise followed immediately by ablation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0257.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kayden Haleakala, khaleakala@g.ucla.edu

Abstract

Seasonal snow water equivalent (SWE) accumulation in California’s Sierra Nevada is primarily governed by a few orographically enhanced snowstorms. However, as air temperatures gradually rise, resulting in a shift from snow to rain, the governing processes determining SWE accumulation versus ablation become ambiguous. Using a network of 28 snow pillow measurements to represent an elevational and latitudinal gradient across the Sierra Nevada, we identify distributions of critical temperatures and corresponding storm and snowpack properties that describe how SWE accumulation varies across the range at an hourly time scale for water years 2010–19. We also describe antecedent and prevailing conditions governing whether SWE accumulates or ablates during warm storms. Results show that atmospheric moisture regulates a temperature dependence of SWE accumulation. Conditions balancing precipitable water and snow formation requirements produce the most seasonal SWE, which was observed in the (low-elevation) northern and (middle-elevation) central Sierra Nevada. The high southern Sierra Nevada conservatively accumulates SWE with colder, drier air, resulting in less midwinter ablation. These differences explain a tendency for deep, low-density snowpacks to accumulate rather than ablate SWE during warm storms (having median temperatures exceeding 1.0°C), reflecting counteracting liquid storage and internal energy deficits. The storm events themselves in these cases are brief with modest moisture supplies or are otherwise followed immediately by ablation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0257.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kayden Haleakala, khaleakala@g.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 467.29 KB)
Save
  • Albano, C. M., M. D. Dettinger, and A. A. Harpold, 2020: Patterns and drivers of atmospheric river precipitation and hydrologic impacts across the western United States. J. Hydrometeor., 21, 143159, https://doi.org/10.1175/JHM-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bair, E. H., R. E. Davis, and J. Dozier, 2018: Hourly mass and snow energy balance measurements from Mammoth Mountain, CA USA, 2011–2017. Earth Syst. Sci. Data, 10, 549563, https://doi.org/10.5194/essd-10-549-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., R. Rice, and S. B. Roy, 2015: Estimated loss of snowpack storage in the eastern Sierra Nevada with climate warming. J. Water Resour. Plann. Manage., 141, 04014055, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and P. Lettenmaier, 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265284, https://doi.org/10.1029/94RG00625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartos, M. D., and M. V. Chester, 2015: Impacts of climate change on electric power supply in the western United States. Nat. Climate Change, 5, 748752, https://doi.org/10.1038/nclimate2648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan, 2016: Dominant flood generating mechanisms across the United States. Geophys. Res. Lett., 43, 43824390, https://doi.org/10.1002/2016GL068070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, W. T., K. J. Bormann, F. Cannon, J. S. Deems, T. H. Painter, D. F. Steinhoff, and J. Dozier, 2020: Quantifying the spatial variability of a snowstorm using differential airborne lidar. Water Resour. Res., 56, e2019WR025331, https://doi.org/10.1029/2019WR025331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., C. Zheng, P. Lanigan, A. M. W. Yau, and D. J. Neelin, 2015: Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys. Res. Lett., 42, 59835991, https://doi.org/10.1002/2015GL064424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., J. Lu, S.-W. Son, D. M. W. Frierson, and J.-H. Yoon, 2016: Uncertainty in future projections of the North Pacific subtropical high and its implication for California winter precipitation change. J. Geophys. Res. Atmos., 121, 795806, https://doi.org/10.1002/2015JD023858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colbeck, S. G., 1975: Analysis of hydrologic response to rain-on-snow. Research Rep. 340, 13 pp., https://hdl.handle.net/11681/5886.

  • Dettinger, M. D., D. R. Cayan, M. K. Meyer, and A. E. Jeton, 2004a: Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099. Climatic Change, 62, 283317, https://doi.org/10.1023/B:CLIM.0000013683.13346.4f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., K. Redmond, and D. Cayan, 2004b: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, https://doi.org/10.1175/JHM-390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudley, R. W., G. A. Hodgkins, M. R. McHale, M. J. Kolian, and B. Renard, 2017: Trends in snowmelt-related streamflow timing in the conterminous United States. J. Hydrol., 547, 208221, https://doi.org/10.1016/j.jhydrol.2017.01.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldardiry, H., A. Mahmood, X. Chen, F. Hossain, B. Nijssen, and D. P. Lettenmaier, 2019: Atmospheric river-induced precipitation and snowpack during the western United States cold season. J. Hydrometeor., 20, 613630, https://doi.org/10.1175/JHM-D-18-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States. J. Geophys. Res., 112, D15109, https://doi.org/10.1029/2007JD008397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritze, H., I. T. Stewart, and E. Pebesma, 2011: Shifts in western North American snowmelt runoff regimes for the recent warm decades. J. Hydrometeor., 12, 9891006, https://doi.org/10.1175/2011JHM1360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and Coauthors, 2017: Large near-term projected snowpack loss over the western United States. Nat. Commun., 8, 14996, https://doi.org/10.1038/ncomms14996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, D., 2010: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal., 54, 11671178, https://doi.org/10.1016/j.csda.2009.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvelmann, J., and M. Weiler, 2014: Variability of observed energy fluxes during rain-on-snow and clear sky snowmelt in a midlatitude mountain environment. J. Hydrometeor., 15, 12201237, https://doi.org/10.1175/JHM-D-13-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvelmann, J., S. Pohl, and M. Weiler, 2015: Spatio-temporal controls of snowmelt and runoff generation during rain-on-snow events in a mid-latitude mountain catchment. Hydrol. Processes, 29, 36493664, https://doi.org/10.1002/hyp.10460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and Coauthors, 2019: Precipitation regime change in western North America: The role of atmospheric rivers. Sci. Rep., 9, 9944, https://doi.org/10.1038/s41598-019-46169-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenson, N., L. R. Leung, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2018: Influence of atmospheric rivers on mountain snowpack in the western United States. J. Climate, 31, 99219940, https://doi.org/10.1175/JCLI-D-18-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, https://doi.org/10.1029/2010GL044696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, https://doi.org/10.1002/wrcr.20537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, https://doi.org/10.1002/2016GL067978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., and P. D. Brooks, 2018: Humidity determines snowpack ablation under a warming climate. Proc. Natl. Acad. Sci. USA, 115, 12151220, https://doi.org/10.1073/pnas.1716789115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., S. Rajagopal, J. B. Crews, T. Winchell, and R. Schumer, 2017: Relative humidity has uneven effects on shifts from snow to rain over the western U.S. Geophys. Res. Lett., 44, 97429750, https://doi.org/10.1002/2017GL075046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Howat, I. M., and S. Tulaczyk, 2005: Climate sensitivity of spring snowpack in the Sierra Nevada. J. Geophys. Res., 110, F04021, https://doi.org/10.1029/2005JF000356.

    • Search Google Scholar
    • Export Citation
  • Hu, J. M., and A. W. Nolin, 2019: Snowpack contributions and temperature characterization of landfalling atmospheric rivers in the Western Cordillera of the United States. Geophys. Res. Lett., 46, 66636672, https://doi.org/10.1029/2019GL083564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., A. D. Hall, and N. Berg, 2018: Anthropogenic warming impacts on today’s Sierra Nevada snowpack and flood risk. Geophys. Res. Lett., 45, 62156222, https://doi.org/10.1029/2018GL077432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., D. L. Swain, and A. D. Hall, 2020: Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Sci. Adv., 6, eaba1323, https://doi.org/10.1126/sciadv.aba1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and S. A. Margulis, 2017: Climatology of seasonal snowfall accumulation across the Sierra Nevada (USA): Accumulation rates, distributions, and variability. Water Resour. Res., 53, 60336049, https://doi.org/10.1002/2017WR020915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and A. AghaKouchak, 2018: Mountain snowpack response to different levels of warming. Proc. Natl. Acad. Sci. USA, 115, 10 93210 937, https://doi.org/10.1073/pnas.1805953115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and S. A. Margulis, 2018: Investigating the variability of high-elevation seasonal orographic snowfall enhancement and its drivers across sierra Nevada, California. J. Hydrometeor., 19, 4767, https://doi.org/10.1175/JHM-D-16-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, K. S., and J. A. Jones, 2015: Precipitation-snowmelt timing and snowmelt augmentation of large peak flow events, western Cascades, Oregon. Water Resour. Res., 51, 76497661, https://doi.org/10.1002/2014WR016877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jennings, K. S., T. G. F. Kittel, and N. P. Molotch, 2018: Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget. Cryosphere, 12, 15951614, https://doi.org/10.5194/tc-12-1595-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, P. E., J. R. Jordan, A. B. White, D. A. Carter, D. M. Costa, and T. E. Ayers, 2017: The NOAA FM-CW snow-level radar. J. Atmos. Oceanic Technol., 34, 249267, https://doi.org/10.1175/JTECH-D-16-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Gross, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, https://doi.org/10.1175/1520-0434(2000)015%3c0700:TMEAAF%3e2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2010: Observed climate-snowpack relationships in California and their implications for the future. J. Climate, 23, 34463456, https://doi.org/10.1175/2010JCLI2903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2012: Causes of recent changes in western North American snowpack. Climate Dyn., 38, 18851899, https://doi.org/10.1007/s00382-011-1089-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattelmann, R., 1997: Flooding from rain-on-snow events in the Sierra Nevada. IAHS Publ., 239, 59–65.

  • Kirchner, P. B., R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo, 2014: LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci., 18, 42614275, https://doi.org/10.5194/hess-18-4261-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and R. B. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, https://doi.org/10.1002/qj.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klos, P. Z., T. E. Link, and J. T. Abatzoglou, 2014: Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophys. Res. Lett., 41, 45604568, https://doi.org/10.1002/2014GL060500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, https://doi.org/10.1175/JCLI3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., M. Palecki, L. Ensor, K. G. Hubbard, D. Robinson, K. Redmond, and D. Easterling, 2009: Trends in twentieth-century U.S. snowfall using a quality-controlled dataset. J. Atmos. Oceanic Technol., 26, 3344, https://doi.org/10.1175/2008JTECHA1138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., D. J. Neelin, B. R. Lintner, and B. T. Anderson, 2015: Patterns of precipitation change and climatological uncertainty among CMIP5 models, with a focus on the midlatitude Pacific storm track. J. Climate, 28, 78577872, https://doi.org/10.1175/JCLI-D-14-00800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015GL064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., M. L. Wrzesien, M. Durand, J. Adam, and D. P. Lettenmaier, 2017: How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett., 44, 61636172, https://doi.org/10.1002/2017GL073551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., D. P. Lettenmaier, S. A. Margulis, and K. M. Andreadis, 2019: The role of rain-on-snow in flooding over the conterminous United States. Water Resour. Res., 55, 84928513, https://doi.org/10.1029/2019WR024950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., and B. Huggett, 2008: Evergreen trees as inexpensive radiation shields for temperature sensors. Water Resour. Res., 44, W00D04, https://doi.org/10.1029/2008WR006979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., J. R. Minder, P. J. Neiman, and E. Sukovich, 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, https://doi.org/10.1175/2010JHM1264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., M. Hughes, B. Henn, E. D. Gutmann, B. Livneh, J. Dozier, and P. Neiman, 2015: High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. J. Hydrometeor., 16, 17731792, https://doi.org/10.1175/JHM-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lute, A. C., and J. T. Abatzoglou, 2014: Role of extreme snowfall events in interannual variability of snowfall accumulation in the western United States. Water Resour. Res., 50, 28742888, https://doi.org/10.1002/2013WR014465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, P., M. E. Kelleher, P. G. Sansom, and J. Methven, 2020: Is the subtropical jet shifting poleward? Climate Dyn., 54, 17411759, https://doi.org/10.1007/s00382-019-05084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., and J. Dozier, 1992: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, https://doi.org/10.1029/92WR01483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., J. Kimball, D. Tingey, and T. Link, 1998: The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 15691587, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., 2007: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Climatic Change, 82, 309325, https://doi.org/10.1007/s10584-006-9180-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazurkiewicz, A. B., D. G. Callery, and J. J. Mcdonnell, 2008: Assessing the controls of the snow energy balance and water available for runoff in a rain-on-snow environment. J. Hydrol., 354, 114, https://doi.org/10.1016/j.jhydrol.2007.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and L. E. Hay, 2007: Rain-on-snow events in the western United States. Bull. Amer. Meteor. Soc., 88, 319328, https://doi.org/10.1175/BAMS-88-3-319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., D. M. Wolock, and M. Valentin, 2018: Warming is driving decreases in snow fractions while runoff efficiency remains mostly unchanged in snow-covered areas of the western United States. J. Hydrometeor., 19, 803814, https://doi.org/10.1175/JHM-D-17-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze, and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, https://doi.org/10.1175/JAS3554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meromy, L., N. P. Molotch, T. E. Link, S. R. Fassnacht, and R. Rice, 2013: Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Processes, 27, 23832400, https://doi.org/10.1002/hyp.9355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, J. D. D., J. Jin, and S.-Y. Wang, 2012: Systematic patterns of the inconsistency between snow water equivalent and accumulated precipitation as reported by the snowpack telemetry network. J. Hydrometeor., 13, 19701976, https://doi.org/10.1175/JHM-D-12-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., and D. E. Kingsmill, 2013: Mesoscale variations of the atmospheric snow line over the northern Sierra Nevada: Multiyear statistics, case study, and mechanisms. J. Atmos. Sci., 70, 916938, https://doi.org/10.1175/JAS-D-12-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, and G. H. Roe, 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, https://doi.org/10.1175/JAS-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and R. C. Bales, 2005: Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resour. Res., 41, W11421, https://doi.org/10.1029/2005WR004229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and R. C. Bales, 2006: SNOTEL representativeness in the Rio Grande headwaters on the basis of physiographics and remotely sensed snow cover persistence. Hydrol. Processes, 20, 723739, https://doi.org/10.1002/hyp.6128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, https://doi.org/10.1175/JCLI3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., S. Li, D. P. Lettenmaier, M. Xiao, and R. Engel, 2018: Dramatic declines in snowpack in the western US. npj Climate Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen, 2018: Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Climate Change, 8, 808812, https://doi.org/10.1038/s41558-018-0236-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, D. J., B. Langenbrunner, J. E. Meyerson, A. Hall, and N. Berg, 2013: California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. J. Climate, 26, 62386256, https://doi.org/10.1175/JCLI-D-12-00514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, NASA, and U.S. Air Force, 1976: U.S. Standard Atmosphere, 1976. 227 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a035728.pdf.

  • O’Hara, B. F., M. L. Kaplan, and S. J. Underwood, 2009: Synoptic climatological analyses of extreme snowfalls in the Sierra Nevada. Wea. Forecasting, 24, 16101624, https://doi.org/10.1175/2009WAF2222249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, A. P. Ballantyne, A. E. Klene, and S. W. Running, 2015: Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett., 42, 153161, https://doi.org/10.1002/2014GL062803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pathak, T. B., M. L. Maskey, J. A. Dahlberg, F. Kearns, K. M. Bali, and D. Zaccaria, 2018: Climate change trends and impacts on California agriculture : A detailed review. Agronomy, 8, 25, https://doi.org/10.3390/agronomy8030025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and D. R. Cayan, 2013: The uneven response of different snow measures to human-induced climate warming. J. Climate, 26, 41484167, https://doi.org/10.1175/JCLI-D-12-00534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444, https://doi.org/10.1175/2008JCLI2405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2017: Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep., 7, 10783, https://doi.org/10.1038/s41598-017-11285-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., T. Bardsley, M. Penscinski, and J. Miller, 2015: SNOTEL sensor upgrade has caused temperature record inhomogeneities for the Intermountain West: Implications for climate change impact assessments. Western Water Assessment Climate Research Briefing, 11 pp., https://wwa.colorado.edu/publications/reports/snotel_report.pdf.

  • Rhoades, A. M., P. A. Ullrich, and C. M. Zarzycki, 2018: Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Climate Dyn., 50, 261288, https://doi.org/10.1007/s00382-017-3606-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, https://doi.org/10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safeeq, M., S. Shukla, I. Arismendi, G. E. Grant, S. L. Lewis, and A. Nolin, 2016: Influence of winter season climate variability on snow–precipitation ratio in the western United States. Int. J. Climatol., 36, 31753190, https://doi.org/10.1002/joc.4545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scalzitti, J., C. Strong, and A. Kochanski, 2016: Climate change impact on the roles of temperature and precipitation in western U.S. snowpack variability. Geophys. Res. Lett., 43, 53615369, https://doi.org/10.1002/2016GL068798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seligman, Z. M., J. T. Harper, and M. P. Maneta, 2014: Changes to snowpack energy state from spring storm events, Columbia River headwaters, Montana. J. Hydrometeor., 15, 159170, https://doi.org/10.1175/JHM-D-12-078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, and A. Frei, 2001: Characteristics of large snowfall events in the montane western United States as examined using Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, https://doi.org/10.1029/2000WR900307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Q. Jiang, M. G. Fearon, and P. Tabary, 2003: Orographic precipitation and air mass transformation : An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454, https://doi.org/10.1256/qj.01.212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2004: Changes in snowmelt runoff timing in western North American under a “business as usual” climate change scenario. Climatic Change, 62, 217232, https://doi.org/10.1023/B:CLIM.0000013702.22656.e8.

    • Crossref