The Use of Serially Complete Station Data to Improve the Temporal Continuity of Gridded Precipitation and Temperature Estimates

Guoqiang Tang aColdwater Laboratory, Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada
bCentre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Guoqiang Tang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0923-583X
,
Martyn P. Clark aColdwater Laboratory, Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada
bCentre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
, and
Simon Michael Papalexiou bCentre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
cDepartment of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
dFaculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

Search for other papers by Simon Michael Papalexiou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stations are an important source of meteorological data, but often suffer from missing values and short observation periods. Gap filling is widely used to generate serially complete datasets (SCDs), which are subsequently used to produce gridded meteorological estimates. However, the value of SCDs in spatial interpolation is scarcely studied. Based on our recent efforts to develop a SCD over North America (SCDNA), we explore the extent to which gap filling improves gridded precipitation and temperature estimates. We address two specific questions: 1) Can SCDNA improve the statistical accuracy of gridded estimates in North America? 2) Can SCDNA improve estimates of trends on gridded data? In addressing these questions, we also evaluate the extent to which results depend on the spatial density of the station network and the spatial interpolation methods used. Results show that the improvement in statistical interpolation due to gap filling is more obvious for precipitation, followed by minimum temperature and maximum temperature. The improvement is larger when the station network is sparse and when simpler interpolation methods are used. SCDs can also notably reduce the uncertainties in spatial interpolation. Our evaluation across North America from 1979 to 2018 demonstrates that SCDs improve the accuracy of interpolated estimates for most stations and days. SCDNA-based interpolation also obtains better trend estimation than observation-based interpolation. This occurs because stations used for interpolation could change during a specific period, causing changepoints in interpolated temperature estimates and affect the long-term trends of observation-based interpolation, which can be avoided using SCDNA. Overall, SCDs improve the performance of gridded precipitation and temperature estimates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0313.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guoqiang Tang, guoqiang.tang@usask.ca

Abstract

Stations are an important source of meteorological data, but often suffer from missing values and short observation periods. Gap filling is widely used to generate serially complete datasets (SCDs), which are subsequently used to produce gridded meteorological estimates. However, the value of SCDs in spatial interpolation is scarcely studied. Based on our recent efforts to develop a SCD over North America (SCDNA), we explore the extent to which gap filling improves gridded precipitation and temperature estimates. We address two specific questions: 1) Can SCDNA improve the statistical accuracy of gridded estimates in North America? 2) Can SCDNA improve estimates of trends on gridded data? In addressing these questions, we also evaluate the extent to which results depend on the spatial density of the station network and the spatial interpolation methods used. Results show that the improvement in statistical interpolation due to gap filling is more obvious for precipitation, followed by minimum temperature and maximum temperature. The improvement is larger when the station network is sparse and when simpler interpolation methods are used. SCDs can also notably reduce the uncertainties in spatial interpolation. Our evaluation across North America from 1979 to 2018 demonstrates that SCDs improve the accuracy of interpolated estimates for most stations and days. SCDNA-based interpolation also obtains better trend estimation than observation-based interpolation. This occurs because stations used for interpolation could change during a specific period, causing changepoints in interpolated temperature estimates and affect the long-term trends of observation-based interpolation, which can be avoided using SCDNA. Overall, SCDs improve the performance of gridded precipitation and temperature estimates.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-20-0313.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guoqiang Tang, guoqiang.tang@usask.ca

Supplementary Materials

    • Supplemental Materials (PDF 2.79 MB)
Save
  • Allen, R. J., and A. T. DeGaetano, 2001: Estimating missing daily temperature extremes using an optimized regression approach. Int. J. Climatol., 21, 13051319, https://doi.org/10.1002/joc.679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appelhans, T., E. Mwangomo, D. R. Hardy, A. Hemp, and T. Nauss, 2015: Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat., 14, 91113, https://doi.org/10.1016/j.spasta.2015.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baez-Villanueva, O. M., and Coauthors, 2020: RF-MEP: A novel random forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beguería, S., M. Tomas-Burguera, R. Serrano-Notivoli, D. Peña-Angulo, S. M. Vicente-Serrano, and J.-C. González-Hidalgo, 2019: Gap filling of monthly temperature data and its effect on climatic variability and trends. J. Climate, 32, 77977821, https://doi.org/10.1175/JCLI-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Daly, C., G. H. Taylor, W. P. Gibson, T. W. Parzybok, G. L. Johnson, and P. A. Pasteris, 2000: High-quality spatial climate data sets for the United States and beyond. Trans. ASAE, 43, 1957, https://doi.org/10.13031/2013.3101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, https://doi.org/10.3354/cr022099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., J. W. Smith, J. I. Smith, and R. B. McKane, 2007: High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. J. Appl. Meteor. Climatol., 46, 15651586, https://doi.org/10.1175/JAM2548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, https://doi.org/10.1175/2007JAMC1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Piazza, A., F. L. Conti, L. V. Noto, F. Viola, and G. La Loggia, 2011: Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf., 13, 396408, https://doi.org/10.1016/j.jag.2011.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., P. A. Pasteris, H. F. Diaz, M. S. Plantico, and N. J. Lott, 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39, 15801591, https://doi.org/10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., O. Arakawa, and A. Yatagai, 2011: An automated quality control method for daily rain-gauge data. Global Environ. Res., 15, 183192.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hengl, T., M. Nussbaum, M. N. Wright, G. B. M. Heuvelink, and B. Gräler, 2018: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518, https://doi.org/10.7717/peerj.5518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 12051219, https://doi.org/10.1016/j.jhydrol.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. New, and C. McSweeney, 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841858, https://doi.org/10.1007/s00382-009-0698-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., D. W. McKenney, K. Lawrence, J. H. Pedlar, R. F. Hopkinson, E. Milewska, and P. Papadopol, 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, https://doi.org/10.1175/2008JAMC1979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, C. H., and N. Stuart, 2001: A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: The interaction between number of guiding variables and the type of interpolation method. J. Appl. Meteor., 40, 10751084, https://doi.org/10.1175/1520-0450(2001)040<1075:ACASFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kling, H., M. Fuchs, and M. Paulin, 2012: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424–425, 264277, https://doi.org/10.1016/j.jhydrol.2012.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., R. A. Pielke Sr., R. A. Pielke Jr., J. R. Christy, and R. T. McNider, 2009: An alternative explanation for differential temperature trends at the surface and in the lower troposphere. J. Geophys. Res., 114, D21102, https://doi.org/10.1029/2009JD011841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., A. D. Heap, A. Potter, and J. J. Daniell, 2011: Application of machine learning methods to spatial interpolation of environmental variables. Environ. Modell. Software, 26, 16471659, https://doi.org/10.1016/j.envsoft.2011.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., and Coauthors, 2018: Compilation of climate data from heterogeneous networks across the Hawaiian Islands. Sci. Data, 5, 180012, https://doi.org/10.1038/sdata.2018.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., and Coauthors, 2019: High-resolution gridded daily rainfall and temperature for the Hawaiian Islands (1990–2014). J. Hydrometeor., 20, 489508, https://doi.org/10.1175/JHM-D-18-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., A. J. Newman, T. W. Giambelluca, and M. Lucas, 2020: Characterizing the uncertainty and assessing the value of gap-filled daily rainfall data in Hawaii. J. Appl. Meteor. Climatol., 59, 12611276, https://doi.org/10.1175/JAMC-D-20-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and M. P. Clark, 2020: TIER version 1.0: An open-source Topographically InformEd Regression (TIER) model to estimate spatial meteorological fields. Geosci. Model Dev., 13, 18271843, https://doi.org/10.5194/gmd-13-1827-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and Coauthors, 2015: Gridded ensemble precipitation and temperature estimates for the contiguous United States. J. Hydrometeor., 16, 24812500, https://doi.org/10.1175/JHM-D-15-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., M. P. Clark, R. J. Longman, E. Gilleland, T. W. Giambelluca, and J. R. Arnold, 2019: Use of daily station observations to produce high-resolution gridded probabilistic precipitation and temperature time series for the Hawaiian Islands. J. Hydrometeor., 20, 509529, https://doi.org/10.1175/JHM-D-18-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., M. P. Clark, A. W. Wood, and J. R. Arnold, 2020: Probabilistic spatial meteorological estimates for Alaska and the Yukon. J. Geophys. Res. Atmos., 125, e2020JD032696, https://doi.org/10.1029/2020JD032696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappas, C., S. M. Papalexiou, and D. Koutsoyiannis, 2014: A quick gap filling of missing hydrometeorological data. J. Geophys. Res. Atmos., 119, 92909300, https://doi.org/10.1002/2014JD021633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pena-Angulo, D., N. Cortesi, M. Brunetti, and J. C. González-Hidalgo, 2015: Spatial variability of maximum and minimum monthly temperature in Spain during 1981–2010 evaluated by correlation decay distance (CDD). Theor. Appl. Climatol., 122, 3545, https://doi.org/10.1007/s00704-014-1277-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos-Calzado, P., J. Gómez-Camacho, F. Pérez-Bernal, and M. F. Pita-López, 2008: A novel approach to precipitation series completion in climatological datasets: Application to Andalusia. Int. J. Climatol., 28, 15251534, https://doi.org/10.1002/joc.1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, L., G. Thirel, and C. Perrin, 2018: Technical note: Pitfalls in using log-transformed flows within the KGE criterion. Hydrol. Earth Syst. Sci., 22, 45834591, https://doi.org/10.5194/hess-22-4583-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrano-Notivoli, R., S. Beguería, and M. de Luis, 2019: STEAD: A high-resolution daily gridded temperature dataset for Spain. Earth Syst. Sci. Data, 11, 11711188, https://doi.org/10.5194/essd-11-1171-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simolo, C., M. Brunetti, M. Maugeri, and T. Nanni, 2010: Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach. Int. J. Climatol., 30, 15641576, https://doi.org/10.1002/joc.1992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., M. P. Clark, A. J. Newman, A. W. Wood, S. M. Papalexiou, V. Vionnet, and P. H. Whitfield, 2020: SCDNA: A serially complete precipitation and temperature dataset for North America from 1979 to 2018. Earth Syst. Sci. Data, 12, 23812409, https://doi.org/10.5194/essd-12-2381-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., M. A. Saz-Sanchez, and J. M. Cuadrat, 2003: Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Res., 24, 161180, https://doi.org/10.3354/cr024161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. A., A. Hall, D. Kidd, and B. Minansy, 2016: Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability. Theor. Appl. Climatol., 124, 11451165, https://doi.org/10.1007/s00704-015-1461-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woldesenbet, T. A., N. A. Elagib, L. Ribbe, and J. Heinrich, 2017: Gap filling and homogenization of climatological datasets in the headwater region of the Upper Blue Nile Basin, Ethiopia. Int. J. Climatol., 37, 21222140, https://doi.org/10.1002/joc.4839.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 451 0 0
Full Text Views 382 195 22
PDF Downloads 321 114 8