• Anagnostou, M. N., and et al. , 2018: Advancing precipitation estimation and streamflow simulations in complex terrain with X-band dual-polarization radar observations. Remote Sens., 10, 1258, https://doi.org/10.3390/rs10081258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, https://doi.org/10.1175/2007JAMC1611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartsotas, N. S., E. N. Anagnostou, E. I. Nikolopoulos, and G. Kallos, 2018: Analyzing satellite QPE underestimation over mountainous terrain: A NWP-based microphysical investigation. Geophysical Research Abstracts, Vol. 20, Abstract EGU2018-15952, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-15952.pdf.

  • Behrangi, A., and Y. Wen, 2017: On the spatial and temporal sampling errors of remotely sensed precipitation products. Remote Sens., 9, 1127, https://doi.org/10.3390/rs9111127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., G. Delrieu, J.-D. Creutin, and C. Obled, 2004: Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol., 299, 166179, https://doi.org/10.1016/S0022-1694(04)00363-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, and D. Sirmans, 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771, https://doi.org/10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D., V. Melnikov, D. Priegnitz, R. A. Brown, P. L. Heinselman, E. R. Mansell, and V. T. Wood, 2014: Tornadic supercells in central Oklahoma on May 19, 20, and 31 of 2013: NSSL radar data. Proc. Special Symp. on Severe Local Storms: The Current State of the Science and Understanding Impacts, Atlanta, GA, Amer. Meteor. Soc., 825, https://ams.confex.com/ams/94Annual/webprogram/Paper233974.html.

  • Chrisman, J. N., 2014: Multiple Elevation Scan Option for SAILS (MESO-SAILS)—The next step in dynamic scanning for the WSR-88D. WSR-88D Radar Operations Center, 27 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.

  • Clark, R. A. III, and et al. , 2017: Hydrological modeling and capacity building in the Republic of Namibia. Bull. Amer. Meteor. Soc., 98, 16971715, https://doi.org/10.1175/BAMS-D-15-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federal Coordinator for Meteorological Services and Supporting Research, 2013: Part A: System concepts, responsibilities, and procedures. Doppler Radar Meteorological Observations, Federal Meteorological Handbook 11, U.S. Department of Commerce Doc. FCM-H11A-2013, 49 pp., https://www.ofcm.gov/publications/fmh/allfmh2.htm.

  • Flamig, Z. L., H. Vergara, and J. J. Gourley, 2020: The Ensemble Framework for Flash Flood Forecasting (EF5) v1.2: Description and case study. Geosci. Model Dev., 13, 49434958, https://doi.org/10.5194/gmd-13-4943-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and et al. , 2011: Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb Basin, Oklahoma. J. Hydrometeor., 12, 973988, https://doi.org/10.1175/2011JHM1287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and et al. , 2017: The FLASH Project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., 98, 361372, https://doi.org/10.1175/BAMS-D-15-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed phased array radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and E. N. Anagnostou, 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102, https://doi.org/10.1029/2003JD003986.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2020: Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research Series, Vol. 67, Springer Nature, 343–353.

    • Crossref
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges?. Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., H. J. Vergara, E. N. Anagnostou, J. J. Gourley, Y. Hong, and D. Stampoulis, 2013: Investigating the applicability of error correction ensembles of satellite rainfall products in river flow simulations. J. Hydrol., 14, 11941211, https://doi.org/10.1175/JHM-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Martinaitis, S. M., and et al. , 2017: The HMT multi-radar multi-sensor hydro experiment. Bull. Amer. Meteor. Soc., 98, 347359, https://doi.org/10.1175/BAMS-D-15-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nai, F., S. M. Torres, and R. D. Palmer, 2016: Adaptive beamspace processing for phased-array weather radars. IEEE Trans. Geosci. Remote Sens., 54, 56885698, https://doi.org/10.1109/TGRS.2016.2570138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2002: Weather Radar Technology Beyond NEXRAD. National Academies Press, 97 pp., https://doi.org/10.17226/10394.

    • Crossref
    • Export Citation
  • Nijssen, B., and D. P. Lettenmaier, 2004: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the global precipitation measurement satellites. J. Geophys. Res., 109, D02103, https://doi.org/10.1029/2003JD003497.

    • Search Google Scholar
    • Export Citation
  • Park, H., A. V. Ryzhkov, D. S. Zrnic, and K. E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rafieeinasab, A., and et al. , 2015: Toward high-resolution flash flood prediction in large urban areas—Analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. J. Hydrol., 531, 370388, https://doi.org/10.1016/j.jhydrol.2015.08.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnic, 2019: Radar Polarimetry for Weather Observations. Springer, 475 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoica, P., and R. Moses, 2005: Spectral Analysis of Signals. Pearson, 447 pp.

  • Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 1942, https://doi.org/10.1175/WAF-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Veer Martens, B., B. G. Illston, and C. A. Fiebrich, 2017: The Oklahoma Mesonet: A pilot study of environmental sensor data citations. Data Sci. J., 16, 47, https://doi.org/10.5334/dsj-2017-047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergara, H., Y. Hong, J. J. Gourley, E. N. Anagnostou, V. Maggioni, D. Stampoulis, and P. E. Kirstetter, 2014: Effects of resolution of satellite-based rainfall estimates on hydrologic modeling skill at different scales. J. Hydrometeor., 15, 593613, https://doi.org/10.1175/JHM-D-12-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergara, H., P.-E. Kirstetter, J. Gourley, Z. Flamig, Y. Hong, A. Arthur, and R. Kolar, 2016: Estimating a-priori kinematic wave model parameters based on regionalization for flash flood forecasting in the conterminous United States. J. Hydrol., 541, 421433, https://doi.org/10.1016/j.jhydrol.2016.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391752, https://doi.org/10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, Y., Q. Cao, P.-E. Kirstetter, Y. Hong, J. J. Gourley, J. Zhang, G. Zhang, and B. Yong, 2013: Incorporating NASA spaceborne radar data into NOAA National Mosaic QPE system for improved precipitation measurement: A physically based VPR identification and enhancement method. J. Hydrometeor., 14, 12931307, https://doi.org/10.1175/JHM-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, Y., A. Behrangi, H. Chen, and B. Lambrigtsen, 2018: How well were the early 2017 California Atmospheric River precipitation events captured by satellite products and ground-based radars? Quart. J. Roy. Meteor. Soc., 144, 344359, https://doi.org/10.1002/qj.3253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., E. N. Anagnostou, and H. Vergara, 2016: Hydrologic evaluation of NWP-adjusted CMORPH estimates of hurricane-induced precipitation in the southern Appalachians. J. Hydrol., 17, 10871099, https://doi.org/10.1175/JHM-D-15-0088.1.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., and et al. , 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 167 167 64
Full Text Views 17 17 9
PDF Downloads 21 21 9

Effect of Precipitation Sampling Error on Flash Flood Monitoring and Prediction: Anticipating Operational Rapid-Update Polarimetric Weather Radars

View More View Less
  • 1 a Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 2 b NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 c School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4–5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the Norman, Oklahoma (KOUN), WSR-88D radar with ~1-min temporal resolution are used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min resolution) are used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1 km/5 min), space-based observations (10-km/30-min), and hourly rainfall products (1 km/60 min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1 km/1 min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation; 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser; and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yixin Wen, berry.wen@noaa.gov

Abstract

Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4–5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the Norman, Oklahoma (KOUN), WSR-88D radar with ~1-min temporal resolution are used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min resolution) are used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1 km/5 min), space-based observations (10-km/30-min), and hourly rainfall products (1 km/60 min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1 km/1 min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation; 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser; and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yixin Wen, berry.wen@noaa.gov
Save