• Behringer, D., and S. Chaio, 2019: Numerical investigations of atmospheric rivers and the rain shadow over the Santa Clara Valley. Atmosphere, 10, 114, https://doi.org/10.3390/atmos10030114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, https://doi.org/10.1029/92JD01517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coplen, T. B., P. J. Neiman, A. B. White, and F. M. Ralph, 2015: Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector. Tellus, 67B, 28574, https://doi.org/10.3402/tellusb.v67.28574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and et al. , 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 57975803, https://doi.org/10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric Rivers, Floods and the Water Resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., C. R. Williams, P. E. Johnston, and K. S. Gage, 1999: A 3-GHz profiler for precipitating cloud studies. J. Atmos. Oceanic Technol., 16, 309322, https://doi.org/10.1175/1520-0426(1999)016<0309:AGPFPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117, https://doi.org/10.1175/1520-0469(1999)056<4100:TIOGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816, https://doi.org/10.1175/2007JAS2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., E. A. Kalina, J. Aikins, M. Steiner, D. Gochis, P. A. Kucera, K. Ikeda, and J. Sun, 2016: Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 5372, https://doi.org/10.1175/JHM-D-14-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossi, G., A. Lendvai, G. Perretti, and R. Ranzi, 2017: Snow precipitation measured by gauges: Systematic error estimation and data series correction in the central Italian Alps. Water, 9, 461, https://doi.org/10.3390/w9070461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerova, G., E. Brockmann, J. Quiby, F. Schubiger, and C. Matzler, 2003: Validation of NWP mesoscale models with Swiss GPS network AGNES. J. Appl. Meteor., 42, 141150, https://doi.org/10.1175/1520-0450(2003)042<0141:VONMMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448460, https://doi.org/10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: Ein spektrograph für niederschlagstropfen mit automatischer auswertung. Pure Appl. Geophys., 68, 240246, https://doi.org/10.1007/BF00874898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Crossref
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, F. M. Ralph, and A. B. White, 2006: Synoptic and topographic variability of northern California precipitation characteristics in landfalling winter storms observed during CALJET. Mon. Wea. Rev., 134, 20722094, https://doi.org/10.1175/MWR3166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, and A. B. White, 2016: Microphysics regime impacts on the relationship between orographic rain and orographic forcing in the coastal mountains of Northern California. J. Hydrometeor., 17, 29052922, https://doi.org/10.1175/JHM-D-16-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and R. B. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, https://doi.org/10.1002/qj.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., and et al. , 2017: The quantification and correction of wind-induced precipitation measurement errors. Hydrol. Earth Syst. Sci., 21, 19731989, https://doi.org/10.5194/hess-21-1973-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., and et al. , 2016: Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ., 132, 110, https://doi.org/10.1016/j.atmosenv.2016.02.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and J. Deng, 2013: Atmospheric water monitoring by using ground-based GPS during heavy rains produced by TPV and SWV. Adv. Meteor., 2013, 793957, https://doi.org/10.1155/2013/793957.

    • Search Google Scholar
    • Export Citation
  • Lund, J., J. Medellin-Azuara, J. Durand, and K. Stone, 2018: Lessons from California’s 2012-2016 drought. J. Water Resour. Plann. Manage., 144, 04018067, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martner, B. E., and et al. , 1993: An evaluation of wind profiler, RASS, and microwave radiometer performance. Bull. Amer. Meteor. Soc., 74, 599614, https://doi.org/10.1175/1520-0477(1993)074<0599:AEOWPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martner, B. E., S. E. Yuter, A. B. White, S. Y. Matrosov, D. E. Kingsmill, and F. M. Ralph, 2008: Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. J. Hydrometeor., 9, 408425, https://doi.org/10.1175/2007JHM924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massmann, A. K., J. R. Minder, R. D. Garreaud, D. E. Kingsmill, R. A. Valenzuela, A. Montecinos, S. L. Fults, and J. R. Snider, 2017: The Chilean coastal orographic precipitation experiment: Observing the influence of microphysical rain regimes on coastal orographic precipitation. J. Hydrometeor., 18, 27232743, https://doi.org/10.1175/JHM-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., F. M. Ralph, P. J. Neiman, and A. B. White, 2014: Quantitative assessment of operational weather radar rainfall estimates over California’s Northern Sonoma County using HMT-West data. J. Hydrometeor., 15, 393410, https://doi.org/10.1175/JHM-D-13-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. J. Neiman, and A. B. White, 2016: Radar rain-rate estimators and their variability due to rainfall type: An assessment based on hydrometeorology testbed data from the southeastern United States. J. Appl. Meteor. Climatol., 55, 13451358, https://doi.org/10.1175/JAMC-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattioli, V., E. R. Westwater, D. Cimini, J. C. Liljegren, B. M. Lesht, S. I. Gutman, and F. J. Schmidlin, 2007: Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 north slope of Alaska Arctic winter radiometric experiment. J. Atmos. Oceanic Technol., 24, 415431, https://doi.org/10.1175/JTECH1982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., R. G. Strauch, and K. P. Moran, 1988: The altitude coverage of temperature measurements using RASS with wind profiler radars. Geophys. Res. Lett., 15, 13811384, https://doi.org/10.1029/GL015i012p01381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., K. P. Moran, and R. G. Strauch, 1989: The accuracy of RASS temperature measurements. J. Appl. Meteor., 28, 13291335, https://doi.org/10.1175/1520-0450(1989)028<1329:TAORTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., G. A. Wick, F. M. Ralph, B. E. Martner, A. B. White, and D. E. Kingsmill, 2005: Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Mon. Wea. Rev., 133, 11991223, https://doi.org/10.1175/MWR2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapor flux tool for precipitation forecasting. Proc. Inst. Civ. Eng.-Water Manage., 162, 8394, https://doi.org/10.1680/wama.2009.162.2.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., D. J. Gottas, A. B. White, L. J. Schick, and F. M. Ralph, 2014: The use of snow-level observations derived from vertically profiling radars to assess hydrometeorological characteristics and forecasts over Washington’s green river basin. J. Hydrometeor., 15, 25222541, https://doi.org/10.1175/JHM-D-14-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2017: Rapid Refresh (RAP), 13 km. NOAA Operational Model Archive and Distribution System, accessed 19 November 2017, https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap.

  • NOAA/PSL, 2017: Profiler Network Data and Image Library. Physical Sciences, Laboratory, accessed 18 October 2017, https://psl.noaa.gov/data/obs/datadisplay/.

  • Pollock, M. D., and et al. , 2018: Quantifying and mitigating wind-induced undercatch in rainfall measurements. Water Resour. Res., 54, 38633875, https://doi.org/10.1029/2017WR022421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2008: Influence of giant CCN on warm rain processes in the ECHAM5 GCM. Atmos. Chem. Phys., 8, 37693788, https://doi.org/10.5194/acp-8-3769-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosen, J., 2017: California rain put spotlight on atmospheric rivers. Science, 355, 787, https://doi.org/10.1126/science.355.6327.787.

  • Ryoo, J.-M., and et al. , 2020: Terrain trapped airflows and precipitation variability during an atmospheric river event. J. Hydrometeor., 21, 355375, https://doi.org/10.1175/JHM-D-19-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874887, https://doi.org/10.1175/1520-0426(1994)011<0874:CORSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, https://doi.org/10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, https://doi.org/10.1175/2009MWR2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, N., and J. Marwitz, 1989: A numerical study of the warm rain process in orographic clouds. J. Atmos. Sci., 46, 34793486, https://doi.org/10.1175/1520-0469(1989)046<3479:ANSOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs, and L. J. Miller, 1997: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: Radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci., 54, 369385, https://doi.org/10.1175/1520-0469(1997)054<0369:TMSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenzuela, R., and D. E. Kingsmill, 2018: Terrain-trapped airflows and orographic rainfall along the cost of Northern California. Part II: Horizontal and vertical structures observed by a scanning Doppler radar. Mon. Wea. Rev., 146, 23812402, https://doi.org/10.1175/MWR-D-17-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Elsevier Academic Press, 483 pp.

  • Weber, B. L., D. B. Wuertz, D. C. Welsh, and R. McPeek, 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464, https://doi.org/10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., J. R. Jordan, B. E. Martner, F. Martin Ralph, and B. W. Bartram, 2000: Extending the dynamic range of an S-band radar for cloud and precipitation studies. J. Atmos. Oceanic Technol., 17, 12261234, https://doi.org/10.1175/1520-0426(2000)017<1226:ETDROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697, https://doi.org/10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. J. Hydrometeor., 4, 264282, https://doi.org/10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, A. F. Henkel, P. J. Neiman, F. M. Ralph, and S. I. Gutman, 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753, https://doi.org/10.1175/2009JHM1181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., and et al. , 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, https://doi.org/10.1175/JTECH-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., P. J. Neiman, J. M. Creamean, T. Coleman, F. M. Ralph, and K. A. Prather, 2015: The impacts of California’s San Francisco Bay area gap on precipitation observed in the Sierra Nevada during HMT and CalWater. J. Hydrometeor., 16, 10481069, https://doi.org/10.1175/JHM-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

    • Crossref
    • Export Citation
  • Wilson, T. W., and et al. , 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, https://doi.org/10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, D. E., and S. I. Gutman, 2000: Developing an operational, surface-based, GPS, water vapor observing system for NOAA: Network design and results. J. Atmos. Oceanic Technol., 17, 426440, https://doi.org/10.1175/1520-0426(2000)017<0426:DAOSBG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. A. McMurdie, and R. A. Houze, 2018: Stratiform precipitation processes in cyclones passing over a coastal mountain range. J. Atmos. Sci., 75, 9831004, https://doi.org/10.1175/JAS-D-17-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. A. McMurdie, R. A. Houze, and S. Tanelli, 2019: Vertical structure and microphysical characteristics of frontal systems passing over a three-dimensional coastal mountain range. J. Atmos. Sci., 76, 15211546, https://doi.org/10.1175/JAS-D-18-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2006: Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds. J. Aerosol Sci., 37, 203217, https://doi.org/10.1016/j.jaerosci.2005.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 65 65 27
Full Text Views 19 19 8
PDF Downloads 30 30 17

Controls on Wintertime Nonbrightband Rain Rate and Frequency in California’s Northern Coast Ranges

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 2 b NOAA/Earth System Research Laboratory/Physical Sciences Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Nonbrightband (NBB) rain is a shallow, orographic precipitation that does not produce a radar bright band as a result of melting ice crystals. However, NBB rain is not the same as warm rain, which excludes ice from being involved in the microphysical growth of precipitation. Despite this difference, NBB rain is often treated as warm rain in the literature, and past studies have mostly ignored the role of ice. Here, we use two wet seasons (2015/16 and 2016/17) at four precipitation-observing sites in the Northern Coast Ranges of California to show the role of echo top height and ice in determining NBB rain intensity. It was found that NBB rain was only absent of bright bands 32%–46% of the time depending on location of the site. Additionally, all NBB rain rates that exceeded 10 mm h−1 exhibited observable bright bands during the hour period. We also define growth efficiency (GE) as the ability of shallow rain clouds to produce raindrops larger than drizzle size (D > 0.5 mm). High-GE rain drop size distributions were composed of fewer small drops and more large drops than low-GE rain, which was mostly drizzle. High-GE rain occurred with echo top heights above the freezing level where rapid growth of precipitation was observed by radar. Echo tops that only extended 1 km or less above the freezing level suggested hydrometeor growth from mixed-phase processes, indicating that ice may be present in coastal precipitation at warmer temperatures than previously considered.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew D. Cann, matthew.cann@colorado.edu

Abstract

Nonbrightband (NBB) rain is a shallow, orographic precipitation that does not produce a radar bright band as a result of melting ice crystals. However, NBB rain is not the same as warm rain, which excludes ice from being involved in the microphysical growth of precipitation. Despite this difference, NBB rain is often treated as warm rain in the literature, and past studies have mostly ignored the role of ice. Here, we use two wet seasons (2015/16 and 2016/17) at four precipitation-observing sites in the Northern Coast Ranges of California to show the role of echo top height and ice in determining NBB rain intensity. It was found that NBB rain was only absent of bright bands 32%–46% of the time depending on location of the site. Additionally, all NBB rain rates that exceeded 10 mm h−1 exhibited observable bright bands during the hour period. We also define growth efficiency (GE) as the ability of shallow rain clouds to produce raindrops larger than drizzle size (D > 0.5 mm). High-GE rain drop size distributions were composed of fewer small drops and more large drops than low-GE rain, which was mostly drizzle. High-GE rain occurred with echo top heights above the freezing level where rapid growth of precipitation was observed by radar. Echo tops that only extended 1 km or less above the freezing level suggested hydrometeor growth from mixed-phase processes, indicating that ice may be present in coastal precipitation at warmer temperatures than previously considered.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew D. Cann, matthew.cann@colorado.edu
Save